Official mégazine for users of I

HE

viark:

-leumé 5,Issue 6 * June 1984

P/N 885-2053




»DISK DRIVES DISK DRIVES DISK DRIVES DISKDRIVES DISKDRIVES DISKDRIVES DISK DRIVES

PRICE BREAKTHROUGH £

Super Sale on New Disk Drives
Starting at SM! LO\SE’\:ICE

Tandon — Siemens — Remex — MPI — Teac — Shugart — Tabor

40 or 80 Tracks — Single or Dual Head — New 32"’ Drivette™
Our Disk Drives are Capable of Single and Dual Density Operation
The NEWEST Technology Capable of Operating on Most Popular Computers
Drive a Hard Bargain!!™ For your TRS/80, Color Computer, IBM, Apple, Franklin
5 M.B.-20 M.B. Complete Systems. . .... from $999.95

Diskette Breakthrough — 10 Pack in Library Case — $18:9%5 ..2%.
SAVE!! PLEASE CALL FOR OUR MOST CURRENT PRICE REDUCTIONS.

TOLL FREE ORDERING GENERAL AND TECHNICAL

1-800-343-8841 1-617-872-9090
Disk Drives (0123) TRS/80-IBM-Apple - Tl Franklin-Max/80-LNW . . ... -
Model I/111/1V Upgrade (Disk Drives -Memory). .. ..., < CALL
Printers — Daisywheel/Dot Matrix .. ........... ... < TOLL
Percom Double Density Controller (ModelI) . ........................ < (REE
Color Computer Printer Interfaces... ... ......... ... ... .. ..., <
Disk Drive Operating SyStems . . . . ... ...ttt i > FOR
Repair Services Now Offered — FAST Turn-a-Round.................. -t NEW
Apple/Franklin Compatible Add-On Drives with Case & Cable....... ... - PRlCES
Diskettes 5 LIbrary Cases «uuves oo i vonion on o5 55 v wais 5n 6 0% 50 o5 o0 55 =
DISK DRIVE CASES AND POWER SUPPLIES .. .. .. ... starting at $59.95
Printer Buffers 8K to 512K ... ... ... ... ............. starting at $143.95
Holmes Model I/111 Speed-upMod . .................... starting at $90.00
Cables — Printer/Disk DIIVE: .. . sovuman on o smmamas o starting at $23.00

Warranty on Disk Drives — 6 Months to 1 Year

SOFTWARE SUPPORT, INC.

One Edgell Road, Framingham, MA 01701 (617) 872-9090
Hours: Mon. thru Fri. 9:30 am to 5:30 (E.5.T.) 5at. 10 am to 4:30 pm
Service! Service!

SIAILA XMSIO  S3IAIHA XSIA SIAIHAXNSIA  SIAIHA MSIA  SIAIHA MSIA  SIAIHANSIA  SIAIHA MSIA  SIAIHAXMSIA  SIAIHA MSIa

DEALER INQUIRIES INVITED.
CANADA All in stock products are shipped

TERMS: MICRO R.G.S. INC. within 24 hours of order.
M.C./Visa/Amex and personal 751, CARRE VICTORIA, SUITE 403 Repa_irz’_Warmmy service :'.s: perform-
checks accepted at no extra charge. MONTREAL, QUEBEC, CANADA, H2Y 2J3 ed within 24 hour;/of recefplfckg-’egs
C.O.E_)., please add $3.00. Regular Tel. (514) 845-1534 orhe{u:ae :;o;ego edacce;;' h' !, .
Shipping: Please call for amount. c di Toll F 800-361-5155 foreign an orders. Schoo
Not responsible for typographical errors. anadian 1o ree = * and D&B corporate P.O.s accepted.

yslia

TRS/80 Registered Trademark Tandy Corp. IBM-PC Registered 1BM Corp. Apple Registered Trademark Apple Computer Corp.
Franklin Registered Trademark Franklin Corp. Max/80 Registered Trademark Lobo Int.

W
=
s
o
x
2
a
7
w
2
4
=)
X
44
a
%)
w
—
&«
o
X
2
8
o
w
=
o
o
X
24
=}
7
w
2
o
o
¥
a
=
7
w
=
[
o
%
a
o
0
w
2
<
=}
N
2
a
7
w
=
c
o
X
2
o
7
w
=
@
o
¥
24
=)
7
i)
2
&
DISK DRIVES DISK DRIVES DISKDRIVES DISKDRIVES DISKDRIVES DISKDRIVES DISK DRIVES



HUG Manager ................ Bob Ellerton
Software Engineer ............ Pat Swayne
Software Developer and HUG

Bulletin Board ...... Jim Buskziewicz
Software Coordinator .... Nancy Strunk
HUG Secretary ......... Margaret Bacon

REMark Editor ............. Walt Gillespie
Assistant Editor .......... Donna Melland
Printers” oo Imperial Printing

St. Joseph, M|
REMark is a HUG membership magazine published
12 times yearly. A subscription cannot be purchased
sparately without membership. The following rates
apply.
u.s. Canada &
Domestic  Mexico  International

Initial $20 §22¢ $30*
Renewal $17 $19* $24%
*U.S. Funds.

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is acquired
through the local distributor at the prevailing rate,
Limited back issues are availble at $2.50 plus 10%
handling and shipping. Check HUG Product List for
availability of bound volumes of past issues. Re-
quests for magazines mailed to foreign countries
should specify mailing method and appropriate
added cost.

Send Paymentto: Heath Users’ Group
Hilltop Road
St. Joseph, M149085

616-982-3463

Although it is a policy to check material placed in RE-
Mark for accuracy, HUG offers no warranty, either
expressed or implied, and is not responsible for any
losses due to the use of any material in this magazine.
Articles submitted by users and published in REMark,
which describe hardware modifications, are not sup-
ported by Heathkit Electronic Centers or Heath Tech-
nical Consultation.

HUG is provided as a service to its members for the
purpose of fostering the exchange of ideas to en-
hance their usage of Heath equipment. As such, little
or no evaluation of the programs or products adver-
tised in REMark, the Software Catalog or other HUG
publications is performed by Heath Company, in
general and HUG in particular. The prospective user
is hereby put on notice that the programs may con-
tain faults the consequence of which Heath Com-
pany in general and HUG in particular cannot be
held responsible, The prospective user is, by virtue
of obtaining and using these programs, assuming full
risk for all consequences.

REMark is a registered trademark of the Heath Users® Group,
St. Joseph, Michigan

Copyright © 1984, Heath Users’ Group

REMark + June + 1984

=N REMark:

Volume5, Issue 6 * June 1984

on the stack

HUG Conference Registration FOrm ............cccooimcinmnnccnncicnsiinine. 5
The International HUG Conference Margaret Bacon ..., 6

BUggin' HUG ..t 11
Faire Weather Computers Pat Swayne ... 14
Practical File Management David E. Warnick .......ccococoveiecnncs vt 17
Intelligent CALC Robert L. Sanders ...........cc........ e B AT 20
PARCH PAPIS PREBRANIG - soiccussuiarssios sy s s i cooiss v s o 22
“My Favorite Subroutines” ..., 24
COBOL Corner VIl H. W. Bauman ......ccovoeveeeeueeneireeenieceesssesessissesssssssseseenes 26

Terminal Control With H/Z-100 Using MS: FORTRAN
and MACRO-B6 M. Manivannan ...........ccccovcecureeseimeeessenssisssssssssissssasiosesaes 31

A New Approach In MBASIC For Accepting Inputs From

The H/Z-19 and H/Z-89 Keyboard Richard E. Lucka .......cccccccoovvunnec... 37
How To Build An RS$232 Circuit For HERO | /. P. Weichert, Jr. .............. 44
Assembly Language Subroutines With BASIC .Allen Gilchrist, Jr. ............. 47
HUG INEW PROBRICE ...covnsomsimiaimsissiviiemisimsns i 50
HUG Price List ..o 51
Connecting the H/Z-100 to a Gemini Printer Jerome Horwitz ............... 52
It's Contest Time At The Heath/Zenith Users’ Group

BEBIEIBIION suuiviacicovssossniosissms st o s sin s e SR s A ST NS 54
Using A Speech Synthesizer On An H/Z-89 8ill Boyd ..........c.cccc.ceone... 56
The “Getting Started’”” Contest Winners Pat Swayne .............ccc....... 58
Microsoft COBOL-86 (Z-DOS) Review H. W. Bauman ......cccecoveevvernne. 59
Keyboard Dialing John H. King ...o..coeeeeveeeeesieeseesveeesesssese s sssees s sasess s 65
Chirrent LoGEl HUG ClubE «oumumnmmnunsaantmamsinisnmssisans 69

Realistic Benchmark Results Henry Fale ..o 79

Discovering Pascal With a Financial Calculator

Karl L. Remmler




Pro Driver is a new professional communications package for
Z100 computers using the ZDOS operating system. It allows you
to 'talk’ to remote computers using any modem or directly to
another computer through a ‘null modem cable', and allows
transmitting and receiving of both ASCIl and binary files. Pro
Driver lets you perform operating system commands such as
renaming files, deleting files, directory listings or resetting
disks. The clear, uncluttered menu-driven displays make using
Pro Driver a pleasure.

Here are just some of Pro Driver's features:

* Menu-driven request and control options

e Direct support for Hayes Smartmodems

» Report Generator for detailed tracking of calls

* XMODEM, Compuserve B and X/ON X/0FF protocels

¢ 32 User-Definable Automatic Logon Sequences

e Printer Trace function for hardcopy of all data

* Jser-Definable Control Sequences within Pro Driver

» Selectable Baud rates from 45 up to 19,200

* Configurable entry and exit foreground/background
colors, cursor modes and keyclick options

o Help files for quick assistance on Pro Driver functions

» Detailed documentation of all functions

.(;‘:]/

Pro Driver is a professionally designed package from top to bot-
tom. Simple to operate even for the novice, yet with many
features an experienced computer user would demand. For
example, the ‘Reporter’ feature not only logs all calls made and
the length of time per call, but gives you the option of outputting
your report to a printer, a disk file or the video console. And, you
can have that report sorted by telephone number or dates!
Imagine being able to quickly check at the end of a week, month
or even year just how long you spent connected to any specific
time-sharing or bulletin board service. A great way to verify the
connect-time bills they send to you!

Pro Driver comes with over 180 pages of documentation and
pictorial screen displays, but don't let that scare you. Pro Driver
is easy to operate! All major sections are organized with tab
dividers for quick locating. And a complete index is also
included.

The price? Just $49 for the entire package with all of the above
features and more. Pro Driver may be purchased at our retail
store location, by mail (please add $2 for shipping) or check your
local Heathkit Electronic Center for availability.

Pro Driver — the '‘professional’’ communication interface for
your Z100 computer.

...made simple!

e il

O 5,

Call or write for our complete catalog, or additional information
on Pro Driver.

?;9:“;‘ “’“",;;} VENITH

emingham 48017

Phone (313)-645-5365 data
systems




Be There!

Registration
Form In Now!!

REMark + June « 1984




\'- Heath /22
N Users’
Grroup

Get ready for some computing fun!

Margaret Bacon
HUCG Secretary

The International HUG Conference is just around the corner so we
though it would be a good idea to review the events that are
scheduled for the weekend of July 27, 1984, at Pheasant Run Resort.
This year promises to be very exciting for those attending the Confer-
ence or those of you that just want to get away for a great vacation.
Pheasant Run is equipped with everything from a dinner theater to a
myriad of sports activities. And, what you can’t find at the Resort
itself, you will be able to get to within a few minutes of Pheasant Run.

So, what's going on at the Conference?

The Vendor Exhibit Area is always one of the most popular areas of
the Conference. This year we have another strong showing from the
vendors we have come to know as supplying some of the best user
support for any computer available on the market. As of this writing,
the list continues to grow. We have included the vendors that have
come onboard so far elsewhere in this article. You will recognize
many of the names and you will see that some new faces are going to
be there with some exciting products never shown at the Conference
before. Many of the vendors have donated prizes in the form of
software or hardware to be given away Saturday evening. We have

counted at least 77 prizes so far, with promises of even more prizesto
come.

The Heathkit Electronics Centers (VEC) will be represented this year
in a separate room next to the Vendor Exhibit Area. As always,
reliable sources indicate that some great buys are going to be availa-
ble. Also, our source tells us that there will be *'a lot of non-product
stuff””. (11112) So, it might be a good idea to pack your wallet, purse,
suitcase, etc. with that green stuff and make sure you bring those
funny plastic cards. The Heath Stores have always come through
with excellent bargains during the two previous conferences and,
this year is no exception from the information we have been able to
come up with to date.

By popular request, we will again have bulletin boards available for
the following purposes:

Wanted/Trade - This bulletin board will be available to those of
you wishing to purchase or trade items,

For Sale - This bulletin board will be available to those of you
wishing to sell computer related hardware or software.

General Messages - This bulletin board will be available for gen-
eral messages of any nature.

These bulletin boards are reserved for users only. Commercial ads
should not be placed on these boards. Special forms will be made
available for the various boards. We ask that only ads appear for
personal equipment and that the ad only be removed by the indi-
vidual who placed it there. Your cooperation is appreciated.

How about the schedule?

Friday, July 27, 1984, starts with early registration at 1:00 pm. The
Vendor Exhibit Area will open to all users from 4:00 pm to 9:00 pm.
Sessions (outlined elsewhere in this article) will begin at 6:00 pm in
both the Tower Suites and in the Governor’s Hall. Friday's activities
are being held to a minimum so that each of you will have the chance
to explore Pheasant Run and the Vendor Exhibit Area. There are
plenty of fine places in the Resort to catch a quick meal or full dinner.

Saturday, July 28, 1984, begins with the Grand Opening Breakfast
served in the Governor's Hall. Our Keynote speaker will be Mr. Phil
Cole, Director, Heathkit Product Development. Phil’s subject will be
“Heathkit Computer Products - What's Happening?”’. Phil is an
exciting speaker with a good topic for those of us wondering what
Heathkit computer products might be like in the future.

Following Saturday’s Grand Opening Breakfast, we will take a little
break while the exhibitors prepare for the busy day. Some of the talks
will begin however, at 10:30 am in the Tower Suites. One of the
featured talks will be Multitasking Operating Systems by Barry
Watzman. Barry is well known to Heath users. Later in the afternoon,
Barry will present a session on 16-Bit Programming for 8-Bit Pro-
grammers. He has suggested that attendees to his session be well
versed in assembly language to get the most from his talks.

Saturday’s sessions will feature Tom Dornback, Vice President,
Zenith Data Systems Software Development. Tom’s talk will actually
cover three separate subjects including a review of currently availa-
ble Zenith software products, an overview of Zenith’s software direc-
tion, and finally a brief non-technical introduction to the new Z-100
PC’s. Tom has requested that we let you know he will be open to
questions and answers after his presentation.

6

REMark = June « 1984



What ever happened to HDOS 3.07

This question is probably one of the most popular received at our
previous conferences. Afternoon sessions may give us a long awaited
answer to this menacing question! Finally!!! Our understanding is
that we will get a chance to hear some of the actual specifications for
HDOS 3.0 from some of the individuals selected to prepare this latest
update to the product. Come prepared with some good questions!

As the events of Saturday move on toward the closing of the Vendor
Exhibit Area, we will either be worn out or ready to party. And, party
we will (one way or another)! Saturday evening will bring all atten-
dees together at the International Heath Users’ Group Cocktail Party.
The activities scheduled for the party include bunches of food,
casual dress, prizes and lots of fun. The Atrium, a portion of Pheasant
Run, is a pleasant atmosphere where HUG types can get together
and discuss bits, bytes, the kids, etc. over some great snacks.

What can we expect from Zenith, Heath, and VEC?

Almost a tradition, prizes donated from Zenith Data Systems, Heath
Company, and the Heathkit Electronics Centers have been outstand-
ing. This year, all users and vendors will be qualified to win these
prizes. | know! What are they? Well, let's put it this way:

Bill Johnson, President of Heath Company, says “’Let’s give away the
latest in computer kit technology available.”

Joe Schulte, President of VEC (Heathkit Stores), ‘““Ditto."”

Don Moffet, President of Zenith Data Systems, says ““I think one of
these new things with the Winchester would be nice.”

And there you have it! It would appear that some lucky individuals

are going to come away with a new PC series computer to play with!
Don’t miss the Saturday night gathering!

We have received many requests in the past to have a casual gather-
ing place where HUG types can get together to chat, The Atrium is
just the place. If you want to cool off, you can take advantage of the
pool or just sit around and enjoy the company of friends and new
acquaintances. If the crowd gets to be too much, you canslip away to
some of the other facilities available to you during your stay at
Pheasant Run.

Talks will begin early on Sunday, July 29, 1984, so that you can
squeeze in that last little piece of information before departing or
going out for a good round of golf (?!). The Vendor Exhibit Area will
be open from 9:00 am to 3:00 pm. All remaining Conference ac-
tivities will end at 3:00 pm.

It looks like another good year for the International HUG Confer-
ence. The atmosphere provided by Pheasant Run, the company of
fellow computer buffs and the continued support of the Heath-
/Zenith vendors promises to make this event even more exciting
than previous gatherings of HUGgers in Chicago. So, be sure to plan
your vacation early. Bring the entire family! And, remember, we all
hope to see you soon at the International HUG Conference.

Note: This article presents the schedule for the Conference as it is
now planned. Changes that occur between now and the actual date
of the Conference will be announced in the program that you can
obtain when registering with the Heath/Zenith Users’ Group at
Pheasant Run. Any last minute changes will be announced during
the Conference Sessions.

REMark * June + 1984



1984 International HUG Conference

| Discussion Group Schedule
Friday, July 27, 1984

Time Room Subjects Speakers
6:00 pm  Turquoise .....oeeiein.n. Operating Systems EXtensions .........ccocoovviviiinennnan. Pat Swayne
6i0pm RUbY $ sossssusaansrsienies Computer Chef ......ovvveiiiiiiiiiien, Susan Hayes
6:00 pm  Govnrs Hall  ..................... MS-DOS Operating System .......cccccvviiiniiiiiinnns Brian Barnes
6:30pm  CROBY cscsssesmsssssmsvessisasseness C Lanugage ........oocoveivineninnns Walt Bilofsky
7:30 pm  Govars Hall ..o H8/HB89 Hardware ...........ccoeevevernnnnn. Bruce Denton
8:00 pm Turquoise ....occiiiiiiiiinn. Introduction to Computers .............cocoevveveennnn. Ron Hackney

Ruby Z-100°Graphics ...coicuisessrasssasanionm Dale Wilson

Saturday, July 28, 1984

10:30am Ruby s Multitasking Operating SYy$ .....cocoeviveiviviiininnnns Barry Watzman
10:30 am  Sapphire Public Software ..........coovvvvviiiiniiinenns Bob Todd
A30AN  TUIQUBISE i siisesisinime s oo Nie i ROBOtICS ..ivivivinsmmaamniyi Ron Johnson
T2a0om BB @2 ssessssmsssmesrnnrsanins DIskCare unsmmsvamsmnisemi e DYSAN
12:30 pm  Turquoise ...l Introduction to Computers ...........oocoiiiiiiinnnn. Ron Hackney
1:00 pm Govnrs Hall  .................... HDOS 3.0 Operating System ................. W. Parrott & D. Carroll
2:30pm  Ruby 16 Bit For 8 Bit Programmers ...........ccoccevevneennes Barry Watzman
2:30 pm  Govnrs Hall — ................. Zenith Software/Intro to Z150 .....oooiviiiiiiiiiinns Tom Dornback
3:00 pm  Turguoise  .....eeeeeen.... Operating Systems EXtensions .............ccoeevveiiennnnn. Pat Swayne
13:30 pm Govars Hall  ..................... Software Consultants Panel ...........cccocivvviveninnnnn. 5 on Panel
430pm Ruby ...l CP/M 80-85 CP/M 86 COMPArisON .......ccvvvrererrerrnrnnnnns Bill Adney

4730 piy CTUTGUDISE cocssmmeema e i Z-100 Graphics .......coooveeiiiiiiininiennnn. Dale Wilson

Sunday, July 29, 1984

8:30am Govars Hall  .........oceieinnnnnn, Software/Hardware Panel .....................coooeeneen, 3 on Panel

B30 am  Sapphire ocisviseonisessssessiiie Public Software ..........ccocciviniviiiiniiinies Bob Todd
8:30 am  Turquoise ....ieeeoinnn.... Operating Systems EXtensions ............ccocceevvviiennens Pat Swayne
8:30am Ruby Introduction to Computers .........cocoevvvineineennns Ron Hackney
10:00 am  Govars Hall ... e, Z150 Hardware ...........cccocoiviviininnnns Mark Foster
10:30 @am  TUFQUOISE oot CLanguage ........ccooveveiniiiieinnnn. Walt Bilofsky
10030  RUbY 0 csasssmpisascniaiesaiies Z-100 Graphics .......ccoevviviniviinanrinnns Dale Wilson
T1:30am:  GovnrsiHall accovnsiimesiaus ZHODHAAWETR! s Mike Cogswell
11:30am  TUNQUOTSE' ccenmsncvmeissmsmsimsaisi Computer Chef .....cccovveiiiiiniiiinans Susan Hayes

1:00 pm Close

8 REMark * June = 1984



1984 International HUG Conference Exhibitors

Aid Data Systems, Inc.

CDR Systems, Inc.

Cherry Engineering

Cleveland Codonics, Inc.
Colorworks

Computer Consultants to Business
D-G Electronic Developments Co.
Dysan Corporation, CE Division
First Capitol Computer

Fusaro Associates, Inc.

Generic Software

Groffics Innovative Graphic Software
Hampton Business Machines Co.
Hilgraeve Inc.

Hoyle & Hoyle Software Inc.
Husker Systems of Nebraska, Inc.
Jay Gold Software

MPI

1 WEATH/ZENITH USERS' Groy

\!..

C a.
Aarles, llinois » July 27, 28 & ¥

Maps for Micros
Microservices

Micro Widget Works, Inc.
Micro World Publishing
Newline Software

New Orleans General Data Services, Inc.
Quikdata Computer Service, Inc.
Redwood Development

S & K Technology, Inc.

Sextant Publishing Company
SigmaSoft and Systems

Soft Shop

Software Wizardry, Inc.

Studio Computers, Inc.
Sunflower Software, Inc.
Technical Advisors, Inc.
Technical Micro Systems, Inc.
The MSW Company

The Software Toolworks

Viking Software

Barry A. Watzman

Zeducomp Incorporated

ZPAY Payroll Systems

Schedule of Events

1:00 pm to 9:00 pm
4:00 pm to 9:00 pm

7:30 am to 8:30 am

8:30 am to 10:00 am
10:00 am to 5:00 pm
10:30 am to 11:30 am
10:00 am ...........

Friday, July 27, 1984

Saturday, July 28, 1984

. Registration Booth Open
. Vendor Exhibit Area Open
Conference Sessions Begin

Registration Booth Open

. Grand Opening Breakfast (Governor’s Hall)

. Registration Booth Open

Vendor Exhtblt Area Open (Vendors Only)

1 30amt0600pm

12:00 pm 10 3:00 PM cooviiiiiirieeeiieer et e e ee e e e e e e eeaeaas

8:00 am to 1:00 pm

9:00 am to 3:00 pm

. Conference Sessions Begin
Vendor Exhibit Area Open

Buffet Lunch (New Orleans Ballroom)

Cocktail Party and Prizes (Atrium)

. Registration Booth Open
Conference Sessions Begin
. Vendor Exhibit Area Open

Close of International HUG Conference

REMark = june = 1984



IT’S SO EASY TO REACH

S gunmnmou ROADNS

" HEATH/ZENITH USERS CROU
»

&/
/7‘"/85, Illinois & July 27,

S

@

WOODFIELD =
SHOPPING, &
MALL z
<

=

GENEVA

BATAVIA

PHEASANT RUN is just 50 minutes from O'Hare international Airport.

Take the Northwest Tollway to Route 53, continue South on Route 53 (following the signs to
Joliet) to Army Trail Road. Go West on Army Trail Road for 13 miles to Route 59. Take Route 59
South for 3 miles to Route 64, West on Route 64 for three miles and you're there.

Bus service is provided to and from O'Hare Field. Private planes. including small jets, may land

STRATFORD
SQUARE

I3
44’5 7'95 ‘
£&p

ROOSEVELT ROAD

TOLLWAY

FOX VALLEY

SHOPPING MALL

at adjoining DuPage County Airport.

EISENHOWER
EXPWY.

CHICAGO

TRI-STATE \N

45)

N

50 CONDUCTOR
o

0825
oz 40 conoucion
174 ROWND

IES

=
o "-%,

ﬁ

P o
S d— /4

\' J T S QG El‘ Q
g S— 9{

w288
o

X oououcvoa

The RBP-200 is a functional replocement
for the existing backplate on the
H/Z89-90. It installs in minutes with just a
screwdriver. For very old H88s an
adaptor is available to allow use of the
RBP-200 Backplate.

RBP-200 $35.00 plus shipping
Cadlifomia residents add 6% sales tax

The BACKPLATE a neater solution from KRES

DB-25

34 Conductor Disk
40 Conductor Disk
50 Conductor Disk
DB-9

1/4" Round

3/8"“D”

|EEE-488

KRES ENGINEERING - P.O. Box 17328 - Irvine, CA 92713

(818) 957-6322

Printers, modems, parallel ports, RS-232, general purpose

5¥a” disk drives (H-77, H-37 and similar cables)

H-47, H-67 and similar cables

Standard 8" drive cables. A must for Magnolia and CDR users
Joysticks, color monitors, analogue signals A/D, D/A, RS-422
Audio output (music, sound generators, speakers)
microphones, 8SR system X10, control
Video, color monitors, analogue I
signals A/D, D/A, any application ~BR
requiring shielded cable
Instrument control and laboratory
communication

10

REMark * june ¢ 1984




Comments On the ZD Program For the Z-100
Dear HUG,

Finally you came through with something for us Z-100 owners with
Jeff Kallis" ZD program. | was pretty bored with the only other
program that was ever presented, particularly since | did not want to
get rid of my key click. | am speaking about assembly language
programs, of course. Mr. Kallis’ program worked right after | had
gotten rid of all my boo boos. However, | have a bone to pick with
him and several other people who have written books and programs
for ZDOS. It is not necessary in my estimation to clutter your disk
with LST, CREF, and MAP copies until the assembly is completed. In
this respect | agree with Pat Swayne. It may be necessary to get them
later to help debug the program, but when attempting to assemble
the program, they just take up time and use up space on the disk.

| commend Jeff Kallis for his very useful program. Now | hope
somebody grabs it and expands it to make a catalog file so that ZDOS
disks can be cataloged.

Warren F. Earles
2919 Flores Ave.
Laredo, TX 78040

A Problem With ZBASIC
Dear HUG,

Being fairly new to computing, | have come across a problem in
using ZBASIC that no one locally has been able to help me solve. |
would like very much to be able to write educational programs for
my H-100 computer. The problem is with ZBASIC's random number
generator. | am unable to write a program that will automatically
reseed the RANDOMIZE function each time through, and still pro-
duce new random numbers. Manually reseeding the numbers each
time is difficult for second grade handicapped students to understand
and it limits my ability to select random reenforcers for the children.
Isthere anyone in HUG that has figured out a way to circumvent this
need to manually reseed the number generator? | would appreciate
hearing from you and | would be happy to pay for your postage or
copying expenses if necessary.

On a different note, | too made an error while attempting to make
backup copies of my Peachtext 5000 and erased the first disk.
However, unlike Mr. Bartram (Buggin’ HUG Vol. 5, Issue 3), | first
called the Peachtree service number. They told me to return my
erased disk and they would send me a new one free of charge. They
did and | felt the turn-around time to be quite reasonable. | guess the
lesson is that if you have problems with Peachtext, it might be of
benefit to call first.

David Harvey
168 G Chilvers Rd.
Chehalis, WA 98532

ED) Dave, try using the seconds portion of TIME$ under ZBASIC to
gain your seed. This would be a truly random number from 00 to 59.

Anybody Out There Have Customization Notes For WordStar Ver.
2.262?

Dear HUG,

For some time now we have attempted to obtain the Customization
Notes for WordStar version 2.26. MicroPro has discontinued them
and they are not available from Heath/Zenith or any dealer we have
contacted.

If anyone can supply the above Customization Notes, please contact
Chuck Hansen at Bendix, Electric Power Division, Rt. 35, Eaton-
town, NJ 07724, (201) 542-2000 ext. 460.

Thank you for your help in this matter,

Chuck Hansen

Bendix

Electric Power Division
Rt. 35

Eatontown, N| 07724

Another View On Peachtext 5000
Dear HUG,

| am very glad that | purchased Peachtext 5000 before some of the
comments came out in REMark. In fact, | still suggest purchasing the
product, for itis a very good product. Everybody has the right to his
own opinion, and | have one of my own that | think should be voiced.

The comments made about Peachtext 5000 are true, but what hap-
pened to the positive aspects?

Support from Peachtext is far better than any other software | have
purchased. | know because | bug them all the time and get very good
response from them, or to say it politely, they answer the questions.

If | were to buy based on all the features that are available today for
computer software, | might have decided to buy an eighteen wheeler
to run to work, rather than a pick-up truck. Maybe even a Cray
computer rather than a Heathkit. | even noticed your IBM 370 does
not know what to do with a two year subscription to REMark.

Based on the price from Heathkit for Peachtext 5000, and what it can
do, it's a good deal. The documentation and lessons, plus the
methods presented by Peachtext go a far way beyond most of the
other software that | have seen in 1983 or 1984.

You cannot be everything to everybody.

Bert Rathkamp
5950 Park Road
Cincinnati, OH 45243

Another Answer to the Dreaded HT Bug
Dear HUG,

I am writing concerning L. T. Scotney’s letter on page 66 of the April
issue of REMark about “The Dreaded HT Bug''. |, too, was bitten and
quite perplexed when | began experimenting with my Epson FX-80
printer. After a couple of hours of research into the problem and a

phone call to the Heath support personnel, my suspicions were
confirmed.

There is, however, a way around the problem for those printers that
can handle escape codes greater than dec 127 (hex 7F). Add 128
(hex 80) to the 09 and send the printer a dec 137 (hex 89). It works on
the Epson, and if your printer handles codes the same way, it should

REMark + June = 1984

11



work for you. It's not a permanent cure for his bite, it just relieves the
sting.

Frank D. Torchia
16 Ramblewood Drive
Gales Ferry, CT 06335

Goodies For the ‘89 User
Dear HUG,

Just when | was beginning to think you were leaving the HDOS H89
users’ out in the cold, along came an article in REMark that was just
what the doctor ordered. | refer to “’Device Drivers and Communica-
tion” in REMark March 1984. | just completed interfacing a Brother
electronic typewriter to my 89 and used the article to construct a
driver. Since | already did the cable modification for handshaking
signals, all | wanted to do was eliminate the spurious characters that
appear at the beginning of a printout. | followed the instructions but
when the program assembled, [ was left with (2) “ERRNZ’’ errors that
had me puzzled (the same 2 mentioned in Buggin’ HUG of the same
issue - unfortunately | didn’t read that letter in time). | discovered
thatwhen 1 used PIE (Software Toolworks) to modify the program, the
errors would pop up. But if | used Heath's “EDIT" as supplied on
HDOS 2.0, the program would assemble without error. Anyway it
works now and I’'m happy. All that's left is to modify the driver to stop
atpage breaks so | can load paper. Any suggestions on how to do this
for a novice assembly programmer?

Jim Doherty
832 S. Beechwood
Rialto, CA 92376

Another Patch For ‘“MAILPRO”
Dear HUG,

| thoroughly enjoyed Tom Best's article ‘‘Bells and Whistles For
MAILPRO" in the April 1984 REMark. As Tom states, MAILPRO is an
excellent value at a low price. His patches do add some nice new
features to the program. | guess my issue of MAILPRO was an early
version as | found that Tom'’s line numbers did not mesh in properly
with those of my program. | made suitable adjustments and a couple
of minor modifications and agree that it is a nice enhancement. Tom
did not mention any patches to the ““DELETE” subprogram of the
"“UPDATE"” module, but one is necessary to keep the records accu-
rate regarding number of items added. When deleting, each deletion
must reduce the number of items added and items in the data base. A
statement Y=Y-1 is required, and in my case, | called it Line 505. It
immediately follows the GOSUB 700 in the DELETE code.

REMark is a great service! Keep up the good work! REMark and
Sextant complement each other perfectly, and for us HUGgies, is a
perfect combination.

S. K. Magee
234 Oak Street
Audubon, NJ 08106

How Compatible is “IBM Compatible”’?
Dear HUG,

This letter is in response to a letter in the March 84 edition of REMark
from Tim Johnson. | feel he has pinpointed a major area of confusion
for Z-100 users created by the term "IBM compatible’’. This term
gives use to the question: How compatible? What I1BM software can |
use? And what modifications must be made to the software?

| feel an article that details the extent of compatibility and possibly
lists the usable software would be a savior to all of us Z-100 users.
Please, give this some consideration.

Andy Jeffrey
S. U. 2275 Williams College
Williamstown, MA 01267

Some Help From the Author of “An Intro to Assembly Language on
the H/Z-100” (Jan. 1984 REMark)

Dear HUG,

Recently, a Canadian Z-100 user wrote to me about my article on
assembly language programming for the 8088 under ZDOS (RE-
Mark, Jan. 84). He had discovered the fact that spacing of characters
in the Define Byte instructions can be critical. He had typed the
following line:

DB CC_ESC, 'x2, '$' ;Control string to kill

; keyclick

where the correct line was:

DB CC_ESC, 'x2,'$" ;Control string to kill

; keyclick

Note the different spacing. The first line will generate MASM error
message 50, “Value is out of range’’. Thisis all too typical of the kind
of error messages generated by today’s utility software, and my
correspondent couldn’t decipher it. Neither could |, until I tried some
experiments.

My correspondent also made an extremely valid comment almost in
passing. He mentioned that he had difficulty in making use of the
article because at first he didn’t have the necessary programs on his
disk. My article didn't cover this crucial but basic step, and | would
like to rectify that now.

First, a few definitions. There are two basic types of assemblers,
regular and macro. A regular assembler, such as ASM.COM that
comes with CP/M-80 and CP/M-85, operates on symbolic input
data to produce machine instructions. It does this by translating the
symbolic codes into computer instructions, assigning locations in
memory for each successive instruction, or computing absolute
memory addresses from symbolic instructions. Most assemblers
make provision for including other source code files (by use of the
INCLUDE assembler directive, or pseudo instruction). A macroas-
sembler does all that, but in addition, allows the user to preassemble
subroutines that can be gathered together into a library for use with
many different programs. Microsoft's MASM is an example of this
type, and provides extensive library facilities.

In the original article on the use of MASM, no use was made of the
macro feature. Only the INCLUDE pseudo was used. This leads into
adiscussion of how to use the INCLUDE feature to best advantage. It
is possible, of course, to create a SYSGENed disk that contains the
assembler, and use the command line to identify what disk contains
the files to be INCLUDEJ, but this can rapidly become tedious, and
assembly fails when the assembler can’t fine an INCLUDE file. A
better approach is to create a working disk that contains all the files
you might need.

There are two ways to create such a working disk. The first, and
easiest for those with only one disk drive, is to make up a SYSGENed
disk that contains the operating system-related files, MASM, LINK,
EXE2BIN, whatever editor you are using, and the minimal INCLUDE
files. For ZDOS, you can usually get away with the following:

Vectoredto 96 =

12

REMark ¢ June ¢ 1984



SWING INTO ACTION

with the new Z-160 portable PC from Zenith!

You say you want portability and

PC compatibility?

Zenith quality and performance?

You say you want a good price, and you
want it now?

Then say Software Wizardry!

The Z-160 is the new portable personal computer
from Zenith, and Software Wizardry has them, at
a price that will make you give a jungle yell!

The Z-160 is Zenith’s hot new PC addition to the
Z family, and as usual, they do it better—text and
full color graphics without funky add-in cards, up
to 320K RAM on the main board, and MS-DOS
included!

Don’t stampede through the jungle with the Big
Blue Elephants; just take a look at these features!

® Fully IBM[ rIIE‘C hardware and software

compatible -128K RAM, expandable to 320K on
-will run Flight Simulator, considered the main board
an acid test

~Total memory expandable to 640K
® More standard features

-9-inch high resolution amber monitor
-detachable low profile keyboard
-four open slots
-extensive self diagnostics
-RGB color and monochrome
monitor interfaces
-two serial RS-232 ports
- Centronics type parallel printer port

® Extra features
-smooth scroll on monitor
-booting from either drive
-superior configuration program
~four selectable display typestyles
-MS-DOS 2.1 operating system
included standard

DID SOMEONE SAY MEMORY?

They say in the jungle that elephants never forget; well, your Zenith won’t forget either with
RAM chips from Software Wizardry.

Guaranteed first quality, to work in your Z-100, Z-150, or Z-160

Zenith and Software Wizardry are synonymous
;f’![(rll data with quality, capability, and support. Whether the
systems top of the line Z-100 dual processor or the new ‘e
ATONZUYFALRL &NV PC systems, we know Zenith; so grab a vine, and “)0
swing our way!

1106 First Capitol

.ﬁ}l St. Charles, MO 63301
Software Wizardry, Inc. also has over 450 other items of interest 10 Heaih/Zenith usets lLJ ﬂ (314) 946-1968

s well. Call or write for gur FREE price list, Dealer Inquiries and HUG group pur- ) ) ~

chases welcome!




Faire

A Pat Swayne
Avendor uses aZ-150 to demo Bluebush Chess, a
program “for the 1BM PC”.

This year | was the lucky HUGgie who got to go out to San Francisco
for the annual Computer Faire held there. It had been two years since
my last visit, and a few things had changed since then. For one thing,
Radio Shack no longer had the large booth at the entrance to Brooks
Hall (a prime booth location). Apple had it, with IBM next door. At
the Apple booth, a huge replica of a Macintosh computer towered
over the crowd (I told them, “That’s how big you should have made
it"”.) It was actually a rear projection monitor, and displayed the
output from a real Mac somewhere in the booth.

Radio Shack’s booth was a much smaller one hidden somewhere in
the maze of Brooks Hall. Things never stand still in the world of
microcomputers. But the good old Heathkit booth was where it has
always been in the Faire, in the Civic Auditorium where folks would
probably see it before they ever got to Brooks Hall (which is
downstairs). Surrounding the Heathkit booth were the usual “friends
of the family”, such as Magnolia, Kres, CDR, Sextant, Software
Toolworks, and others who support Heath and Zenith computers.

Attendance at the Faire seemed a bit down. Perhaps that is because
of some changes made this year. For one thing, the Faire was open for
4 daysinstead of 3. Another possible factoris that the Faire’s founder,
Jim Warren, sold the whole works to Prentice-Hall publishers, who
put the show on this year. | heard that they encouraged exhibitors to
dress up (many used to wear t-shirts), and the show didn’t seem quite
as "down homey'’ as before. But | thought it was still a good show,
with plenty of goodies to see. The exhibitors were just as enthusiastic
as ever, and a few kept their t-shirts.

The dominant system this year was the IBM PC, with IBM compatible
software or hardware everywhere you looked. Apple came in sec-
ond, with quite a lot of Apple |l stuff still around. At our own booth,
the new Z-150 and Z-160 were on display for the first time in a major
show, and there were handouts on the kit versions that drew quite a
bit of attention. IBM’ers were very impressed with the new machines,

Weather
Computers

Thoughts on the 9th
West Coast Computer Faire

HUG Software Engineer

and with the price of the kit version. | suspect that it will do well.
Many folks brought over 1BM software to try out on the 150's, and |
don’t think that there was anything it could not run. It is very
compatible, and will even boot PC-DOS and the IBM version of
CP/M-86. However, it will not run IBM’s BASIC. Could it be that
they use an environment check similar to that used in the old version
of H89 MBASIC that would not run on Z-100"s? What ever the case,
Zenith's BASIC for it works the same, and was used to run BASIC
programs that people brought over to try out.

| have a few words of commentary on the H/Z-150. Some HUGgers
have expressed concern that it will replace the H/Z-100. | see it as
more of a replacement for the H89 than for the 100. For one thing,
the kit 150 costs about the same as the kit 89 did afew years back. Itis
also an excellent hobby machine, with a whole lot of boards and
software already available from scores of vendors for the hobbiest to
play with. | view the 100 as more of a professional machine than a
hobby machine, even in kit form. The 150 is either a hobby machine
(kit) or just what they call it, a “personal computer”.

The H/Z-150 and H/Z-160 were designed in a way that makes them
easily mass producible, and that design lends to their appeal as
hobby machines. Instead of having a mother board with most of the
functions on it as in the 89 and 100, the 150 and 160 have a simple
bus board (like an H8 or old style S100 machine) with aCPU board, a
disk controller board, a video board, and a RAM/I0 board plugged
into it. This design lends itself to the addition of new video boards,
CPU boards, etc. In other words, an easy machine to “tinker”” with,
and to expand. How about a CP/M board, similar to the “Baby
Blue”, but 100% H89 compatible?

For years now we have had a de facto standard operating system for
8-bit computers (CP/M) that allowed wide spread distribution of
software. It is far from being the best operating system, but it is a
standard, and that says a lot. Now that 16-bit computers have ar-

14

REMark ¢ June = 1984



rived, we have not only a standard operating system (MS- DOS), but
ahardware standard (IBM) as well. Like CP/M, they are both far from
being the best available, but they are standard. The Heath/Zenith
implementation of that standard is, in my opinion, the best there s,
Evidence of that could be seen at the Faire. Even though the 150 had
only been available for sale a few weeks, | saw a few at some
software vendors’ booths being used to demo software written for
IBM PC’s. Vendors | talked to were enthusiastic about the 150.

| guess that's enough commentary on that subject. The (3) 150’s and
(1) 160 were not the only things we had in the Heathkit booth. We
also had (3) Z-100's, and many IBM types who came to look at the
150’s were ushered over to a 100 to show them some ‘“‘real”
graphics. We had the HUG game disk (885-3004-37) on one
machine, and the slot machine game was a big hit. | found an
independent Zenith dealer with his own booth in another part of the
Faire who was also using the HUG disk for a demo.

This year there was a 10 foot extension to the Heathkit booth where
some actual construction work on a Heathkit was done. ATV camera
and a large monitor (Zenith, of course) set up on a pedestal allowed
the crowd to watch the action. In addition to the 100’s and 150's in
the main booth, there was also one lonely Z-90 running a demo and
two HERO robots, one with his clothes off.

One of the best things about working a show such as the Computer
Faire is that, in your spare time, you get to see what the other guys are
doing. | looked at, and in some cases played with, some of the
competitors’ machines. | tried drawing with Mac Paint on an Apple
Macintosh (using the mouse). My evaluation after that brief en-
counter is that unless you are an accomplished artist using conven-
tional methods, you aren’t going to be able to do much with Mac
Paint. | think | could do better with a light pen than with a mouse.

One item that impressed me a lot is DEC Talk, a speech synthesis
module from Digital Equipment Corp. for their new computers
(Rainbow, Professional). It can translate ordinary text on the screen
into speech, can change pitch to sound like several different men’s
and women's voices, and can even sing. It is so ““smart” that if $38
occurs in the text, it sounds out “‘thirty eight dollars”, and if it sees
$38 million, it sounds out “thirty eight million dollars’’. They had no
brochures to hand out on it, but took my name to mail me something
(which | haven't received yet).

Among the Heath/Zenith support vendors, there weren’t many new
things that haven't already been mentioned in REMark articles or
ads. One pair of items that caught everyone's eyes were conversion
kits to convert H-89 or Z-100 computers to transportables. These kits
were introduced by Kres Engineering (P. O. Box 17328, Irvine, CA
92713 (213) 957-6322). They allow you to put the “'guts” of your
computer into a metal box along with a 9-inch monitor, some thin
drives, and a hinged cover that houses the keyboard.

The Software Toolworks (15233 Ventura Boulevard, Suite 1118,
Sherman Oaks, CA 91403) displayed a new version of their
MYCHESS computer chess game that can run on a Z-100 or |BM-
type computer. A configuration program lets you set it up for the kind
of computer you are using. They gave me a copy of it to try out and
demo on the computers in our booth. Since the show | have tested it
extensively, and found a couple of bugs. Hopefully they will be fixed
before | do a full review (hint!). They also provided a copy of their
new MYCALC spreadsheet program. It is the successor to their
previous ZENCALC, has several new features, and is still reasonably
priced at $59.95. Watch for a review in REMark.

One of the personal highlights of the Faire for me was that | got to
meet Dr, Jerry Pournelle who writes the “User’s Column’ in Byte

The POR-100 from Kres Engineering. It is a Z-100 installed in a transport-
able case.

San Francisco Electronics, an independent Zenith dealer who had their own
booth, used HUG software for demonstrations.

-

Some of the many people who visited the Faire. This is the MicroPro booth,
where continuous lectures and demonstrations on products such as
WordStar were given.

Magazine. He is one of Heath /Zenith’s biggest fans out there in the
“real world”, and has something good to say about Heath/Zenith
equipment in just about every issue of Byte. If you get Byte Magazine
and haven't been reading Jerry’s column, you are missing the best
part of the magazine.

The Faire was, as always, a great chance to see what the rest of the
micro world is like. Now I'm looking forward to the HUG Confer-
ence, where | can see how the best part of the micro world is doing.

REMark +* June = 1984

%

15



ZENITH Users: FINE HARDWARE ACCESSORIES

Catch These Bargalnsl 2204 Mulll-Port §-100 Card. Adds 4 serial

ports and 2 parallel ports 1o your Z100. In-

from cludes 1 DCE, 1 DTE, and 1 Parallel con-

Husker Systems of Nebraska el Gall fiomour il peices

RDOM-256 MS-DOS RAM-DISK. Add Ihe
pleasure of instant file access from RAM

GREAT PRINTER VALUESI RETAIL PRICE OUR PRICE with this new Zenith p[aducl_
DOT MATRIX PRINTERS: Suggested List-$1025 Our Sale Price-$8091
MPI-99 80 col,100 cps,P,8 599 CALL % ) $ !
MPI-150 132 col,150 cps,P 995 CALL ROM Version 2.0 Upgrade. This new version
PRISM 132 col,110+ cps,P,8 1499 1179 provides buill-in diagnostics, memory view-
PRISM/graphic 132 col,110+ cps,P,S 1995 1549 Ing, and other features to your Z100.
OKIDATA 80 col, 80 cps,P 299 263 Call f le price!
OKIDATA 80 col,160 cps,P 599 473 or our sale price!
OKIDATA 132 col,160 cps,P 999 727 HIGHLY RELIABLE 8 INCH DRIVES
GENIN] 38 0120 cps,¥ ats b Our 8 inch-disk drive include the cable and
DELTA 10 in,160 cps,P,S 649 4 1Y W Th ! alod-and
RADIX 10 in,200 cps,P,S* 849 659 a 1 Year Warranty. They are lancooled an
DAISY WHEEL PRINTERS: are enclosed In an altractive while cabinel
SILVERREED 10 in,14 cps,P 599 479 with a hBaVV"dUIy power guppw_ These
S8ILVERREED ig i"'ig cp"g 1232 é:LIL drives provide 1.25 MB DSDD storage.
DIABLO n cpsa :
DIABLO 13 in,45 cps:P,s 2400 CALL RETAILPRICE-$859 OURPRICE-§527
DAISYWRITER 16.5 in,16.5 cps,P,8 1445 1117 PIICEON 20MB WINCHESTER DRIVES
TRANSTAR ig invig cPﬂv:oS 1232 122; Get the spead and capacily only hard disk
TRANSTAR n, cps . il
codes: col/In refer to carriagn width, cps=char per sec (speed) f::ch:(ﬂl:} :2::: quagl‘yﬁdmlaack;:::g's

s=gerial interface, P=parallel interface + pOwar supply, '

all cables, and sofiware lo be supporlad

Note: Most parallel interface printers have a serial option under ZDOS. An unbealable buyl

sa call us for pricing. We will deall RETAIL PRICE-$2495 OUR PRICE-$1887

MAG: The Software Subscription Service-
A 2VAG Subscription gives you a megazine and a diskette every 6 weeks., That's 8 issues a year, each
containing 10 to 15 good programs covering the scope of personal camputing applications. And a membership
alse provides you with B free consulting calls, a 10% discount on our software, special discounts,
interesting articles, and editorials. At ONLY $147 each year, your per program cost is less than $2, and
you can select our Easy-Pay option--Pay $75 now and we'll bill yiiu the rest laterl S\Z[tha;rlb; 'IIIMYl:
CP/M-80 hard sector; soft sector
VIDBO*PROFESSOR: Fine Educational Software-
The Video*Professor Educational Series uses the computer to teach you interactively with easy-to-follow
text, exauples, and menu-driven quizzes. Courses avalilable are: MBasic(ZBasic) Programming I, Assembler
Programming I, and Structured Progranming. New courses in final development stages are ZBasic Graphics
Progranming, Pascal, Cobol, Randam File Programming, and others. Normally, each course lists for $29.95,
but with this offer get the 3 available courses for (NLY $22 each or all 3 for just $62--a 30% dlncumti
[HDOS,CP/M-80 hard sector; ZDOS,CP/M-85 soft sector
GOMM-PAK: A Double Value For Z100 Conmunications-
(DM4-PAK is 2 of our best communications products in 11 It includes ZED-OOMM, our popular, easy-to-use
yet oulti-function modem control program and REM-ON, the Remote Console Utility that allows you to use
your 2100 from an ASCI] terminal at a remote location. Via modem connections, you can num prograns
(including ZBasic) just as if you were sitting at your Z100 keyboardl Packaged together in an attractive
linen binder, the regular price is $94.90. Your price is ONLY $69.95, a 25% discount! [ZDOS soft sector]

26000 FILE TRANSFER: Make Your Z100 Conversion Painless-

With 26000 File Transfer System you can move files from your H8/Z89 to your Z100 and back again., It uses
a direct cable connection which you can prepare yourself. 26000 can transfer any size files and will
accept wild cards for transfer of entire diskettes. You get 2 diskettes: 1 for your H8/Z89 and 1 for
your 2100. Regular price is $34.95 but buy it now for JUST $24.95-—or get BOTH the OOMM-PAK and Z6000

for ANLY $91—That's 30% offll [CP/M-80 hard sector AND (P/M-85 (R ZDOS soft sector]
SPECIFY PRODUCTS DESIRED AND FORMAT Payment Method: Check Visa MC Send Catalogi_____
Product(s) Format Price (x) 24AG Easy-Pay OQurrent Date:
Name Address
City State Zip
*Total *Nebraska Residents Add 5% Tax.
\\GIT Toll-Freer (800) 835-7427 ext 277 Or Send Toi Fusker Systems of Nebraska,6657 Redick,Qmaha NE,68152 /




({)

/’<>\\

Part 1

The last series of articles for this column presented random files. We
were able to create and sort them, then get the data we stored from
them. This article begins a series on the practical use of this informa-
tion along with other programming techniques we’ve used in past
articles and some new twists to keep life interesting.

We'll build a data base of information. We'll add to it, delete from it,
change it, sortit, and then look up any data we want from itor printa
chart of the information we've stored. When it's all working we'll
look at some techniques to make it smaller (take up less space in
RAM when running). As we write the program, we'll use some
methods of doing things which we’ve ignored in the past to make it
run faster.

When the series is complete, each reader should have a thorough
enough understanding of what we did and how it works to adapt this
file handling system to any need which he or she may have. And
you'll do it quite easily, too. You'll be able to tailor it to your exact
needs. This will be made simple by modular programming. That just
means that our total package will be built of small easy-to-
understand sub-programs which can be modified with a minimum
effort. The WORDS game and biorhythm chart from past articles
were built this way.

The program we'll write to demonstrate all of this will let us follow
several stocks, bonds, or anything else which changes value periodi-
cally. I've chosen this subject as | feel it can be used by many readers,
is relatively simple, and can be adapted easily for other uses. The files
are not complex and we can get real data on which to try our work.

If you have any questions as we go along, be sure to write. It is
imperative that you include a stamped, self-addressed envelope if
you need a reply. Sometimes I’'m amazed at the volume of mail a
column like this can generate. If you have a problem with one of
these programs running on your machine, you'll probably want to
send a listing to me to check. Most problems I've helped solve were
typing errors. | can’t overemphasize this. Don’t feel bad if it happens
as we all make them and overlook them, but proof read the line
you're having trouble with. Also check your MBASIC manual. Re-
member, this work is written in MBASIC Version 5.21 running under
CP/M 2.2.03. There are some differences in version 4.82 and the
HDOS MBASIC. They are minor but very important and are all
covered very clearly in your manuals.

BASIC Computing

Practlcal
File Management

A File Handling Program

David E. Warnick
RD #2 Box 2484
Spring Grove, PA 17362

Conversion of this work to Benton Harbor BASIC would be a major
undertaking, and unfortunately, time does not permit me to support
that.

These articles and the programs are copyrighted by the author and
are the property of Applied Computing. All HUG members may use
them for their personal non-commercial applications.

On with our program. Figure 1 is a flow chart of the overall program.
It is made up of thirteen blocks, each representing one of the sub-
programs or modules we mentioned above. The first block, program
title, is simple.

2 TRek e AR X STOKFILE  BASH ¥ #ax %%
4 Takxen®R*DAVID E, WARNICK*#*#xsxx
6 THAR A AR 2 ECOPYRIGHT 1983***#xxnsx

We follow this block with all the screen control characters we'll
need. These were explained in issue 46. In order to conserve mem-
ory (our finished program will get quite large), we'll only use the
variables our program will need, rather than using all of CON-
TROL2.BAS as we have done in the past. I'll include REMarks here,
but suggest that you leave them out of your work. They’ll be here for
your reference and needn’t take space on yourdisk orin RAM. This is
not to say that REMarks should be ignored. They should be included
in your programs. Document files explaining the operation of a
program should be written, too. The screen controls our program will
use are:

10 E$=CHR$(27) 'ESCAPE

20 CA$=E$+"Y" 'CURSOR ADDRESSED DIRECTLY
30 ED$=E$+"E" 'ERASE DISPLAY

40 EE$=E$+"J" 'ERASE END OF PAGE

50 EL$=E$+"1" 'ERASE LINE

60 LE$=E$+"K" 'LINE END ERASE

70 SH$=E$+" (" 'SCREEN HOLD MODE

80 SS§=E$+"\" 'SCREEN SCROLL MODE

90 GM$=E$+"F" ' GRAPHICS MODE

100 GO$=E$+"G" 'GRAPHICS OFF

These lines will permit us all the control of the screen we’ll need.

The third block of our flow chart provides for the defining of func-
tions. The only one we have at this time is the function for cursor
control as explained in issue 46.

200 DEF FNCA$ (Y, X)=CA$+CHR$ (31+Y)+CHR$ (31+X)

REMark ¢ June * 1984

17



If you're in doubt about how this works, refer back to issue 46, page
26 and check it out. This is a good time to point out how invaluable
those back issues of REMark are. For those of you who joined HUG
recently, the HUG price list shows volume 1, 2, 3, & 4 for $20.00
each. They're an excellent buy and an inexpensive way to build your
library of back issues. They're full of information. Some individual
back issues are also available from HUG or your local Heath Elec-
tronic Center or Zenith Computer Dealer. So much for the sales
pitch. Back to our program.

As we need to DIMension arrays to hold our data for sorting and
handling we’ll do that on line 400. This leaves space to define
additional functions if required. Then on line 500 we’ll erase the
screen and enter the hold-screen mode.

500 PRINT ED§
510 PRINT SH$

'ERASE DISPLAY
'SCREEN HOLD MODE

We are now to the body of our program. There are two ways to
proceed. One is top-down development. In this method, all the
sections at the top of the program are developed first. When the
program branches to another subroutine, that subroutine is substi-
tuted for by a temporary “DUMMY"’ routine which tells us that we
got there OK. That way we can test main program control and add all
the subroutines |ater.

The second method of program development is the bottom-up
method. Here each subroutine is written, data is developed for it, and
it is tested independently of the rest of the program. When all
subroutines are working, they are combined and the control portion
is written. This is what we did in the last two issues when we worked
on the sort programs.

For this application, we'll use top-down development. In this case |
think it's easier to follow and will make more sense as we add
modules. We'll start with the menu.

A menu, just like those in a restaurant, should present the user with
all the options available. It should be appealing to the eye, easy to
read, and include instructions for its use. It should also include a
provision to handle any operator errors. As for appealing to the eye
and easy to read, a CRT layout form is an invaluable aid. This is
merely a sheet of paper with 24 or 25 lines each containing 80
character spaces. You can fill in all the information you want to
appearon the screen and rearrange it until it's most appealing to you.
While this may involve some trial and error on your part, it's betterto
do it on paper than to try it by programming and re-programming a
portion of a BASIC program. Lines 1000 through 1160 provide our
menu on the screen. We begin each subroutine by erasing the screen
and adding new information. We use cursor positioning instructions
to move about the screen and place all the data where we want it.

1000 PRINT ED§

1010 PRINT FNCAS(2,39);"MENU"
1020 PRINT FNCA$(4,.21);"SELECT THE DESIRED OFTION BY
PRESSING THE"

1030 PRINT FNCA$(5,21);"APPROPRIATE LETTER FROM THE LIST
BELOW"

1040 PRINT FNCA$(8,21);"A — ADD INFORMATION TO THE FILE"
1050 PRINT FNCA$(10,19);"* C — CHANGE INFORMATION IN THE
FILE"

1060 PRINT FNCA$(12,19);"* D — DELETE INFORMATION FROM
THE FILE"

1070 PRINT FNCA$(14,19);"* L - LOOK UP INFORMATION IN
THE FILE"

1080 PRINT FNCA$(16,21);"N — NEW FILE NAME TO BE WORKED
UNH

1090 PRINT FNCA$(18,19);"* P — PRINT INFORMATION FROM
THE FILE"

1100 PRINT FNCA§(20,21);"S — SORT THE FILE"

'ERASE THE DISPLAY

1110 PRINT FNCA$(22,21);"X - EXIT TO THE OPERATING SYSTEM"
1120 PRINT FNCA§(25,5);"**** THE FILE BEING WORKED ON
MUST BE SORTED ";

1130 PRINT "TO USE OPTION C,D,L,N, OR P";FNCA§(1,1)

1140 PRINT FNCA$(1,1);"FILENAME — " F$

1150 PRINT FNCAS(1,45);"FILE ON DRIVE ";D1§;":"

1160 PRINT FNCA$(1,66);"KEY ON DRIVE ";D2§;":"

The rest of our menu sub-program is the decision-making process.
We'll take an input, test it for any of the possible choices offered by
the menu, and direct program execution to the correct subroutine. If
our tests for inputs don't find anything by line 1260, we add an error
message and go back to the menu for another try.

We'll start our subroutines at line 2000 and add another every 3000
after that. By counting by tens as we do when programming, this
allows us 300 lines foreach subroutine. You can do a lot in that space
so it should be enough. Lines 1170 through 1300 do our decision
making for us.

1170 M§=INPUT$(1)

1180 IF M§="A" GOTP 2000
1180 IF M$="C" GOTO 5000
1200 IF wm§="D" GOTO BOOO
1210 IF M§="L" GOTO 11000
1220 IF M§="N" GOTO 14000

'GET AN INPUT

'ADD OPTION CHOSEN
'CHANGE OPTION CHOSEN
'DELETE OPTION CHOSEN
'LOOKUP OPTION CHOSEN
'NEW FILE NAME OPTION
CHOSEN

'"PRINT OPTION CHOSEN
'SORT OPTION CHOSEN

"EXIT TO OPERATING SYSTEM

1230 IF M§="P" GOTO 17000

1240 IF M§="S" GOTO 20000

1250 IF M§="X" GOTO 23000

1260 PRINT ED§ 'ERASE THE DISPLAY

1270 PRINT FNCA$(15,11);"THE KEY YOU PRESSED WAS NOT

ONE OF THE MENU OPTIONS"

1280 PRINT FNCA$(13,26);"PLEASE ENTER YOUR CHOICE AGAIN"

1290 FOR X=1 TO 500:NEXT X 'DELAY FOR TIME TO READ
MESSAGE

1300 GOTO 1000 'BACK TO THE MENU

Note on lines 1180-1250 that I've only allowed for capital letters to
be input. If you want either upper or lower-case letters to work write
these lines as

IF M§="A" OR M§="a" GOTO 2000
etc.

We've now got a heading and a menu. We can test this much of the
program by providing those dummy routines | talked about a few
paragraphs ago. At each place the menu sends execution (line 2000,
5000, 8000, etc.), we'll add one of these. The dummy routine will tell
us what option we've selected. Then it will wait for an input. This just
givesus time to think about what we've done. Press any key and we'll
be returned to the menu at line 1000. We will provide a real exit
subroutine at line 23000. Both the data and the key files are closed
(I'll explain the use of key files later), the cursor is moved to the home
position, and the terminal is put back in the scrolling mode. When
we've completed and tested this much of the program, we can
replace any of the dummy routines with the final program module.
Additionally, if we come up with a better method of performing one
of the optional jobs (a faster sort, more convenient add routine, etc.),
we just replace that module. It’'l] be easy to find and test. The dummy
routines look like this:

2000 PRINT ED§ "ERASE DISPLAY

2010 PRINT FNCA§(11,26);"YOU SELECTED THE ADD OPTION"
2020 PRINT FNCA$(13,26);"PRESS ANY KEY TO CONTINUE"
2030 X§=INPUTS(1) '"WAIT TILL OPERATOR IS READY
2040 GOTO 1000 'BACK TO THE MENU

5000 PRINT ED§ 'ERASE DISPLAY

5010 PRINT FNCA$(11,26);"YOU SELECTED THE CHANGE OPTION"
5020 PRINT FNCAS(13,26);"PRESS ANY KEY TO CONTINUE"

5030 X§=INPUT$(1) 'WAIT TILL OPERATOR IS READY
5040 GOTO 1000 'BACK TO THE MENU

18

REMark * June « 1984



BOOO PRINT ED§ 'ERASE DISPLAY

8010 PRINT FNCA$(11.26);"YOU SELECTED THE DELETE OPTION"
8020 PRINT FNCA$(13,26):"PRESS ANY KEY TQ CONTINUE"
8030 X$=INPUTS(1) 'WAIT TILL OPERATOR IS READY
8040 GOTO 1000 'BACK TO THE MENU

11000 PRINT ED$ 'ERASE DISPLAY

11010 PRINT FNCA$(11,26);"YOU SELECTED THE LOOKUP OPTION"
11020 PRINT FNCA$(13,26);"PRESS ANY KEY TO CONTINUE"
11030 X$=INPUT$(1) 'WAIT TILL OPERATOR IS READY
11040 GOTO 1000 'BACK TO THE MENU

14000 PRINT ED§ 'ERASE DISPLAY

14010 PRINT FNCA$(11,26);"Y0U SELECTED THE NEW NAME
OPTION"

14020 PRINT FNCA$(13,26);"PRESS ANY KEY TO CONTINUE"
14030 X§-~INPUTE(1) 'WAIT TILL OPERATOR IS READY
14040 GOTO 1000 'BACK TO THE MENU

17000 PRINT ED§ 'ERASE DISPLAY

17010 PRINT FNCA$(11,26);"YOU SELECTED THE PRINT OPTION"
17020 PRINT FNCA$(13,26);"PRESS ANY KEY TO CONTINUE"
17030 X$=INPUT$(1) '"WAIT TILL OPERATOR IS READY
17040 GOTO 1000 'BACK TO THE MENU

20000 PRINT ED$ '"ERASE DISPLAY

20010 PRINT FNCA$(11,26);"YOU SELECTED THE SORT OPTION"
20020 PRINT FNCA$(13,26):"PRESS ANY KEY TO CONTINUE"
20030 X§=INPUTS(1) '"WAIT TILL OPERATOR IS READY
20040 GOTO 1000 'BACK TO THE MENU

23000 PRINT ED§

23010 CLOSE #1

23020 CLOSE #2

23030 PRINT FNCA§(1.1)
23040 PRINT SS§

23050 END

'ERASE DISPLAY
"CLOSE THE DATA FILE
'CLOSE THE KEY FILE
'CURSOR HOME

' SCREEN SCROLL

The programming presented thus far provides a menu and control
features for data handling. Dummy modules are included so that
testing can be performed. Enter all the programming lines shown into
your computer and save them. Then run the program to test it. When
asked for an input, try each of the menu choices. Also be sure to try
entries the program is not looking for. This will verify that our error
routine on line 1260 is working correctly.

Testing of a new program or sub-program is every bit as important as
writing it. We must remember to verify that every desirable feature
works as it should and to test for operator errors. There's little worse
than spending a lot of time getting a program to do everything we
want, then having it crash at a critical time just because we rushed
our testing or forgot to make sure it can survive operator errors. You
can't prevent everything such as a system reset, but most common
errors (OOPS, | pressed the wrong key) are easy to take care of with a
little imaginative programming.

That takes care of control and menu functions. Next month we’ll
begin adding the individual modules we need to work with our files,
and we'll look at some simple things we can do to save RAM and disk
space, and to help our program execute faster. Keep a backup of this
portion of the program. It can be used as the beginning of any file
handler you write.

Y

See you next month.

USE ALL YOUR SPECIAL FUNCTION KEYS

With WORDSTAR™
WSKEY™: Now vou can take the mystery out of WerdStar with
SKILL DATA's WordStar enhancement, which implements all twenty-
one ol the H/Z89-19 function/pad keys or all twenty-three Z-100
labeled key commands.
Function key commands are labeled by a twentyfifth line banner,
which can be toggled on and ofl by you durning your session

With dBASE II', ZIP™, SuperCalc™

DBKEY™, ZPKEY™, and SCKEY"™ Just type your favorite
SKILL DATA key command. All function key commands are labeled
by a twenty-fifth line banner, which can be toggled on and off by vou
during your session. Pad keys also function and send multiple key
inputs with a single stroke. All previous command key sequences are
still available for the old and painful ways.

Just $29.95 for each program (plus shipping charges shown below).
H/Z89-19 diskettes are 5.25" 10HS, require CP/M 2.2.03.
Z-100 diskeltes are 5.25" SS; specily CP/M-85 or Z.DOS.

Available in many Heathkit Stores and Quikdata Inc.,, Sheboygan,
WI...or complete and mail this order form with your check or money
order today!

Mail to SKILL DATA, P.O. Box 1943, Olympia, WA 98507.

Yes, | want to use all my special function keys! Send me:
O WSKEY —keys to WardStar: O lor H/289-19 O for 2100 $29.95
O SCKEY —Keys 1o SuperCalc (for CP/M only) $29.95
O DBKEY and ZPKEY —keys to dBASE II: O lor H/ZB9 O for 2100 $29.95
For Z 100 diskettes, specily operating system: O CP/M-85 0 Z DOS

Name

Street

City State e
Zip Phone B
Visa/MC Card # Expires

All orders shipped by first class mail. Include $3.00 per order lor shipping and
handling. $500 lor non-U.S. orders. Payment by check. money order. or Visa/
MasterCard. Allow 2-4 weeks for delivery. 206/352.0669 (evenings)

SKILL DATA, P.O. Box 1943, Olympia, WA 98507

& Heath /22
Users’
Group

The ILLUSTRATOR is a full-featured graphics drawing program for use with the Z.100 pixel
graphics (wiwo color) or the HB9IH19 IMAGINATOR pixel graphics option. No need for a lightpen.

The ILLUSTRATOR

Features Include:

* Turlle Graphics * Area Fill * G4 Colors

s Rubber Banding * Box Fill * (alor Define

® Line Drawing * Circle Rl ® Calor Pattern

* Box Drawing * Diamond Fill * Screen Save

* (ircle Orawing * Copy Area ® Screen Restore

* Ellipse Drawing * Erase Area * Area Save

* Diamond Drawing * Text Mode * Area Restore

& Screen Print ® [nver! Mode ® Compacted Files

* Dot Cursor Control * Help Display * mare. . .

ONLY $89.95!
HOOS version for HBY, HB, requires IMAGINATOR
2008 version for Z-100, color memory optional
Supports many dot graphics printers. Call for info
.
_NEW[INE SOI:TWARE
P.0. Box 402, Littleton, MA 01460 (617) 486.8535

i----.----IIIIII.-'III-II-IIIIII--IIII-II-I--II-III..II.--‘
E NAME CHECK ONE
ESTREET [ 8g, HemM18,
oy HoOS
L4
Esms e (J z100, 2008
s Sendme ____ "The ILLUSTRATOR" programis) at $89.95 each.
8 Check one: [J payment enclosed [1 send COD (add $4.00)
w Send order to:
. NEWLINE SOFTWARE, P.0. BOX 402, LITTLETON, MA 01460
s Foreign orders: add $3.00 Airmail, $10.00 tor non-U.S. checks
.

HDOS is a trademark of Heath Company
2008, 2100 are trademarks of Zenith Data Systems, Inc.
IMAGINATOR is a trademark of Cleveland Codonics, Inc.

REMark = June » 1984

19



Adding intelligence to your
home financial programs using
a BASIC subroutine

Robert L. Sanders
Programming Group
5101 McNarney
Midwest City, OK 73145

|nlel1igenl CALC is a BASIC subroutine that uses BASIC's for-next
loop and subscripted variables to perform smart calculations. The
RAM of your computer is used to replace the pencil, pad, and
calculator in your home budgeting, forecasting or financial plan-
ning.

Its final accuracy is based on the user’s judged approximation of
monthly utility bills (phone, lights, gas, water, etc.). These values can
only be closely guessed at.

The word intelligent describes the most important attribute of this
routine. This separates it from many of the other calculating routines
I've used. It doesn’t use simple lump sum methods to perform its
calculations. For example, if | wanted to determine the number of
months required to save a sum of money to make a purchase, using
the lump sum method | would say:

Income is
Expenses

$950 per month
$400 per month

Therefore Savings are $550 per month

if the item | am interested in purchasing costs $5,500, | would say it
will take ten months to save the money for the purchase
(10*550=5,500). If two of the items that make up my total expenses
are loans that have a balance of 200 and 300 dollars respectively
(Sears and VISA) and the payment due on each balance is $100 per
month, after the second month’s calculation the balance for the loan
that started out with a balance of $200 (Sears) would be 0. And after

the third month the loan that started out with a balance of $300
(VISA) would also be 0.

First Month:
Before Caloulation After Caloulation

Inocome  $950

amount due balance amount due balance
Sears 100 200 100 100
VISA 100 300 100 200
Phone 100 0 100 0
Electricity 100 o 100 0
Total 400

Savings §660

Second Month:
Income §950

amount due balance amount due  balance
Sears 100 100 0 o
VIsA 100 200 100 100
Phone 100 0 100 o
Electricity 100 0 100 8]
Total 400
Savings $560
Third Month:
Income $960

amount due balance amount due balance
Sears 0 D 0 0
VISA 100 100 o o
Phone 100 8} i00 o
Electricity 100 o 100 1]
Total 300
Savings $660

Therefore the amount subtracted for expenses would be $200 less at
the end of the third month. From the fourth month on, the total
amount saved each month would be $750 using this routine. The
time to reach our goal of $5,500 is actually less than ten months
when we use the Intelligent CALC method.

Thus using the Intelligent CALC routine, it takes only 8 months to
accumulate the required $5,500, not the 10 months when using the
lump sum method.

| have attempted to have calculations such as the one described done
at two local computer stores. One salesman used VisiCalc and the
other Lotus 1-2-3. After more than twenty minutes of using compli-
cated input protocols and row, column arrangements, neither sales-
man was able to give me a run that would tell me what | was asking.
So | wrote this simple routine that performs this quickly and easily by

20

REMark * June ¢ 1984



answering prompts on the screen without worrying about which row
or column | put my values in,

10 FOR I=1 TO BO

20 LET EX=EX+BI(I)

30 LET BA(I)=BA(I)-BI(I)

40 IF BA(I)=>0 THEN GOTO BO
50 LET BA(I)=BA(I)+BI(I)

60 LET EX=EX-(BI(I)-BA(I))

70 LET BA(I)=0:LET BI(I)=0

80 NEXT I

Line 10 FOR I1=1 TO BO
This sets up the for-next loop. The number of loops is determined by
the number of bills with a balance owed (BQ).

Line 20 EX=EX+BI(l)

This line adds the payment for bill BI(l) to the expense total (EX), the
number of locations in array BI(l) are the same as the number of bills
with a balance.

Line 30 LET BA(I)=BA(l)-BI(I)
This handles the function of decreasing the balance by the amount of

the payment. The number of locations in array BA(l) are the same as
in array BI(l).

Line 40 IF BA(l)=>0 THEN GOTO 80
This is used to detect when the balance for the payment being
calculated has been paid off and the variables need to be set to 0.

Line 50 LET BA()=BA()+BI(l)

This restores the balance to the value it held before line 30 was
encountered. This is necessary because line 40 detected a negative
value for BA(l) (the payment made in lines 20 and 30 was greater than
the balance due on the bill).

Line 60 LET EX=EX-(BI(1)-BA(l)

This line decreases the value of variable EX (expenses) so that the
amount added to expenses equals only that required to pay off the
balance, which now is less than the previous monthly payments.
This is the final payment.

Line 70 BA(I)=0:LET BI(1)=0
Because the balance has been paid the payments are set to 0.

Line 80 NEXT |
We are now set to go through the next loop in the routine.

Some of the useful applications of a routine such as this are:
a) Tells the actual amount saved over a period of time.

b) Tells the actual amount of time required to make a purchase
based on the cost of the item and your actual savings.

c) Tells the balance of an account after (x) number of payments.
d) Tells when an account balance will actually be paid off.

Here is an example of an application. It's the one described here in
the article.

10 DIM ACCT$(15),BA(15),UP(15),BI(15)
20 M=0:EX=0:MO=1
30 PRINT :INPUT"AMOUNT NEEDED TO MAKE PURCHASE ";ND
40 PRINT:INPUT "CASH OR SAVINGS ON HAND ";CASH
50 PRINT:INPUT "TOTAL MONTHLY NET INCOME "; INCOME
180 PRINT:PRINT:
INPUT"NUMBER OF NON BALANCE PAYMENTS " ;NBP
190 FOR I= 1 TO NBP
200 LET M=M+1
210 PRINT:PRINT"NAME OF NON BALANCE ACCOUNT # “;I:
INPUT ACCT$(M)
220 PRINT:INPUT "AMOUNT DUE PER MONTH ";UR(I)
230 NEXT I
240 PRINT:INPUT"NUMBER OF BALANCE OWED PAYMENTS ";BO
260 FOR I= 1 TO BO

260 LET Me=M+1

270 PRINT:PRINT"NAME OF BALANCE OWED ACCOUNT £ ";I:
INPUT ACCTS (M)

280 PRINT:INPUT"AMOUNT DUE PER MONTH ":BI(I)

290 PRINT:INPUT"BALANCE OWED ON ACCOUNT ";BA(I)

300 NEXT I

310 FOR I=1 TO NBP

320 LET EX=EX + UP(I)

330 NEXT I

340 FOR I= 1 TO BO

350 REM

360 LET EX=EX+BI(I)

370 LET BA(I)=BA(I)-BI(I)

380 IF BA(I)=> 0 THEN GOTO 420

390 LET BA(I)=BA(I)+BI{I)

400 LET EX=EX—(BI(I)-BA(I))

410 LET BA(I)=D:LET BI(I)=0

420 NEXT I

430 LET CASH=CASH+(INCOME-EX)

436 LET EX=0

440 IF CASH => ND GOTO 470

450 LET MO=MO+1

460 GOTO 310

470 PRINT "IT TAKES":MO; " MONTHS TO ACQUIRE "; ND

480 PRINT (CASH-ND);" WILL REMAIN AFTER THE PURCHASE."

490 END

In this program, when prompted to input NON BALANCE payments
you should include such items as utilities, rentals, food, gas, insur-
ance, paperboy, cable TV, and the like. BALANCE OWED payments
are those of the type described in the article such as Sears and VISA.

You will notice several variables used in the prograrn (ACCT$(M),M)
that are not of any apparent use in this program as is. They are used to
provide full screen formatting such as shown in the example calcula-
tions in this article and to provide the other functions described in the
article (actual amount saved over a period of time, balance of an
account after (x) number of payments, and when an account balance
will be paid off). These extended functions of Intelligent CALC are
explained in full detail in the Programming Group’s BASIC Sub-
routines Reference Guide. This and other routines including their
practical applications, plus examples of how to incorporate them in
your programs, all written BASIC, are available for $10.00. The
purchase of the reference guide includes a one year membership in
the Programming Group, Programmers Association (PGPA), at the
address at the beginning of this article.

i i o
o

e
ks

et
i

About the Author: | 4 :v',r‘_ff S

Robert Sanders is a Computer System Specialist for the USAF on
the Airborne Warning and Control System. He has experience in
BASIC, Fortran, and assembly language programming. Also with
HDOS, CP/M, and CDOS operating systems. Robert is also a
chartered member of the Tinker Computer Club and co-founder
of the Programming Group.

%.

REMark * June * 1984

21



Patch Page

This article presents patches for CP/EMulator (885-3007-37),
DIR100 (on 885-3008-37), and the Heath/Zenith version of
CP/M-86. When you patch a program, be sure that you have at least
one backup copy of it in case something goes wrong.

CP/EMulator Patch

The original release version of the CP/EMulator program will not
work with MS-DOS version 2.0 in cases where the operating system
requires memory above FFF:FFFF. CP/EMulator requires memory
starting at 1000:0 for the CP/M programs. The following patch will
allow it to use memory at a higher location if necessary. The patch
must be done to the assembly code (CPM.ASM), which must then be
re-assembled to produce a new CPM.COM. Note: This patch has
been installed in our master disks.

To make the patch, locate the data area indicated by the comment
shown here, and add the line defining CPMSEG. (If CPMSEG is

Pat Swayne
HUG Software Engineer

already there, the complete natch has already been made in your
copy.)

¥ Flags, Pointers, and Data

CPMSEG DW 1000H
SERADR DW o

Next, locate the message area and add a “‘not enough memory”
message as shown below.

i Messages
NMMSG DB 13,10, 'ERROR — Not enough memory'
DB ' for this program.',13,10,'$’
ABTMSG DB ODH, 0AH
DB 'ILLEGAL CP/M FUNCTION CALL: §'

Now, find the label LODR_ENTR, and add the additional lines
shown below, before the CLD statement.

LODR_ENTR:
MOV AX,OFFSET LEND
MOV CL.4
SHR AX,CL
MOV BX,CS
ADD AX,BX
INC AX
PUSH AX
AND AX,OFFFH
POP AX
Jz EVEN
AND AX,OF000H
ADD AH, 10H
EVEN:
MOV BX,WORD PTR CS:2
CMP AX,BX
JNB NOT_ENOUGH_RAM
MOV Word Ptr CPMSEG, AX
MOV ES, AX
MOV BX,O0FFFFH
MOV AL,BYTE PTR ES:[BX]
INC BYTE PTR ES:[BX]
CMP AL,BYTE PTR ES:[BX]
MOV BYTE PTR ES:[BX],AL
PUSH cs
POP ES
JNZ RAM_OK
NOT_ENOUGH_RAM:
MOV DX,OFFSET NMMSG
MOV AH,9
INT 21H
INT 20H
RAM_OK:
CLD
MOV SI,OFFSET BUF

;POINT TO END OF PGM.

;DIVIDE BY 16

; GET THIS SEGMENT

;ADD TO PGM END

;ADD A PARA. FOR GOOD MEASURE

;CHECK FOR EVEN 64K BOUNDARY
;IT'S AN EVEN BOUNDARY
;ELSE, MOVE UP TO THE NEXT ONE

;GET UNUSED SEG. ADDRESS

;GOT ENOUGH RAM?

;NO, ERROR

;SAVE CP/M SEGMENT

;PUT ES HERE

;POINT TO LAST BYTE IN SEGMENT
;GET A BYTE

;TRY TO CHANGE MEMORY

;SEE IF IT CHANGED

;FIX RAM

;FIX ES
;RAM IS OK

;ELSE, SAY "NOT ENOUGH RAM"

Locate the label NOT_FIRST_TIME and change MOV AX,1000 to

what is shown.

NOT_FIRST_TIME:

MOV BYTE PTR CS:FTFLAG,1 ;
MOV AX,WORD PTR CPMSEG
MOV ES, AX

MARK FIRST TIME DONE

; ES at 1000H (2nd bank of 64K)

22

REMark « June « 1984



Locate the comment “SET IN DUMMY...” and replace MOV AL,1
with the 4 lines shown below before the OUT statement.

INT 21H

MOV AX,WORD PTR CPMSEG
MOV CL,4

SHR AX,CL

XCHG AL, AH

ouT OFDH, AL

; SET IN DUMMY CONTROL-C ROUTINE
: GET CP/M SEGMENT

;5 SHIFT IT DOWN
; PUT RESULT IN AL
, Set BOBS5 to address proper 64K bank

Find the comment “NOT AT ZERO...”” and change the code from
there to the label TIMEXIT to what is shown below.

; NOT AT ZERO, EXIT

; ELSE, SET ES TO CP/M SEGMENT
; INCREMENT TIC COUNTER
; IF NOT, EXIT

JZ TIMEXIT

MOV AX,WORD PTR CS:CPMSEG
MOV ES, AX

INC WORD PTR ES:TICCNT
JNZ TIMEXIT

INC WORD PTR ES:TICCNT+2

TIMEXIT:

At the end of the program, add a label LEND as shown below.

STACK:
LEND:
CPM ENDS
END START

After you make the patches, assemble CPM.ASM to a .COM file
using the procedure on page P.5 of your Z-DOS manual.

DIR100 Patch

The DIR100 program on the Z-DQOS UTILITIES disk (885-3008-37)
has a bug in it that will not allow it to list more than 256 files
correctly. To fix the problem, locate the label BLDORD in the source
code and change the lines from there to the line with NEXTT so that
they appear as below. If the code already looks like this, all patches
have already been installed.

BLDORD: MOV AX,Word Ptr COUNT :GET COUNT
BLDORD1 : MOV Word Ptr [BX],DX 1 SAVE ORD ADDR
INC BX
INC BX
ADD DX,CX ;POINT TO NEXT ENTRY
DEC AX :MORE?
JNZ BLDORD1 .. YES
MOV Word Ptr NEXTT,0ffset ORDER;SET TABLE POINTER

While you are working on DIR100, you may also want to make the
next patch, which causes the files to be listed on the screen more
rapidly. Locate the label TYPEIT and change the subroutine there so
that it appears as below.

TYPEIT: MOV AL, M
OR AL, AL ;TEST FOR HI BIT
JNS TYPEIT1 :NONE THERE
PUSH  AX ; SAVE CHARACTER
CALL  TYPTX
DB 27, 'p'+80H
POP AX
AND AL,7FH ;STRIP PARITY BIT
CALL  TYPEC
CALL  TYPTX
DB 27,'q"+80H
INC BX
DEC CH
JINZ TYPEIT
RET
TYPEITi:CALL  TYPEC
INC BX
DEC CH
JNZ TYPEIT
RET

After making the patches, assemble DIRT00 to a .COM file.

; ELSE, UPDATE HIGH TIC COUNTER

CP/M86 Patch

The initial release of Heath/Zenith CP/M-86 (release 1.10) has a
bug in the 8-bit emulation part of it that causes it to occasionally
“kick out’”” of running programs back to the operating system. This
problem occurs rarely, but it can be a real headache if you are in the
middle of an editing session. To fix it, duplicate disk 3 of your
CP/M-86 distribution disks and remove the files CLDR207.A86,
FORMAT.A86, and LBIOS207.A86 from it. Copy the file CPM.H86
from disk 2 of the distribution disks to the new disk. Make sure you
have an editor (such as ED.CMD), ASM86.CMD, and
GENCMD.CMD on your system disk. In the file R85PKG.LIB on the
new disk, locate the label SWAP85 and add the line shown below.

SWAPBS:
MOV ES,RB5MCBA
MoV ES:COMFLG,0 ;<— THIS LINE ADDED
MOV ES:COMWHO, ZPSPPS5+ZPSPIBS

Re-assemble the BIOS by entering

A>ASMB86 B:BIOS86 $PZ SZ

Combine the resulting hex file and CPM.H86 with PIP as follows.
(You can now delete BIOS86.A86 if you need space.)

A>PIP B:CPMX.HB6=B:CPM.HB6,B: BI0S86.HB6

After combining the files, you can delete CPM.H86 and BIOS86.H86
if you need space. Now, run GENCMD to make a CMD file:

A>GENCMD B:CPMX 8080 CODE[A40]
Rename the resulting file to CPM.SYS:
A>REN B:CPM.SYS=CPMX.CMD

Now, you are ready to replace the existing CPM.SYS file on your
system disk with the new one. Make sure you have a backup system
disk before you start. First, remove write protection from the old
CPM.SYS with STAT, as follows.

A>STAT CPM.SYS $R/W
Now, delete it and copy on the new one:

A>ERA CPM.SYS
A>PIP A:=B:CPM.SYS

Reset your computer and boot up on the system with the new
CPM.SYS to test it. If it works OK, you can set the write protect and
system attributes:

A>STAT CPM.SYS $R/0
A>STAT CPM.SYS $§SYS

Now you can run 8-bit software under CP/M-86 with confidence
that you will not get “kicked out”. ¥\

REMark ¢ June + 1984

23



‘“My Favorite

Subroutines’’

Dear HUG,

Here is a short one liner that produces the first 30 Fibonacci num-
bers. The sequence can be extended by declaring X and Y as double
precision, and greater program flexibility can be attained by sub-
stituting /N’ for /15" and changing the first PRINT statement to
(INPUT”Fibonacci numbers'’;N: etc).

10 PRINT"Fibonacci numbers:":¥=1:FOR I=1 TO 15:
X=X+Y:Y=Y+X: PRINT X, Y:NEXT

George Holt
403 2nd St. West
BAFB, LA 71110

Dear HUG,

For your "My Favorite Subroutines’ column, | have a quickie that|
have used many times in the past. | needed to develop it as a result of
transferring a dairy management program from another machine into
the H-89. They have a PRINT @ statement that allows you to print any
specific location on the screen using either a fixed constant or a
variable name. The screen is numbered similarly to the H-89 with
location 1 being in the upper left corner and the highest number
1920 being at the lower right corner of the screen. You can print at
any location on the screen using either fixed constants or any vari-
able name that results in a decimal number of any magnitude. The
quickie is as follows.

In the beginning of the program you have the following statement:

DEF FN Q$(X)=CHRE(27)+"Y"+CHRS [ INT(X/80)+32)
+CHRS ( XMODBO+32)

The CHRS (INT(X/80)+32) portion takes the decimal number and di-
vides by 80 to get the integer of the row and adds 32 to offset for the
31 special codes.

The cHrs (xMops0+32) portion of the direct cursor addressing state-
ment gets the remainder after dividing by 80 for column location and
also adds 32 to offset for the 31 special codes.

Then in the body of the program you would just use the following to
print at any specific location using a fixed constant or a variable.

50 PRINT FNQ$(440) "Hello there" or
50 PRINT FNQ$(A) "Hello there"

| enjoy every magazine and hope that this column along with many
other interesting ones continue.

Fred Schmidt
4578 Lantern Ct. N.W.
Comstock Park, M1 49321

Dear HUG,

Here is my favorite subroutine, which | call “The Defeat of Humbug
Printer Buffering”. Software buffering for printer output is very nice,
when you want it. When you don’t want it, it can be aggravating and
cause you to wish misfortune to some arrogant software program-
mer. Sometimes, itis very useful to see exactly what has been printed
before deciding what to do next. Here is a subroutine in C/80
(Software Toolworks) that works under HDOS to put out a single byte
at a time to a printer (mine is an Epson MX-80) immediately, with no
ifs, ands, or buts, and without waiting for an internal software buffer
to fill up, or for the printer channel to be closed.

putclp(prchan,c) int prchan; char c;
{static char a; a = ¢, write(prchan.,&a,1) ; }

A printer channel must be opened before you start using a putclp, by
a

prchan = fopen{"LP:","w") :

command. The HDOS and C/80 manuals say that the write com-
mand argument for buffer length must be a multiple of 256. Fortu-
nately, that is not necessary for the LP: device handler that Heath
supplied with my HDOS system. In the above command, the buffer
length is specified as one byte.

Phillip L. Emerson
3707 Blanche
Cleveland Heights, OH 44118

Dear HUG,

After having read the ““My Favorite Subroutines” column in the April
1984 issue, it seemed the right time for me to send in my favorite
routine regarding PRINT and/or LPRINT.

| have seen so many routines where so many statements are used to
perform such a simple task that | thought you might find this one
much simpler.

No PEEK statement is needed and you can use either PRINT or
LPRINT, whichever suits you.

If you wish to use a PRINT statement and then use them for both
console and printer output, then use ‘POKE 3,170’ for output to the
printer:

10 INPUT"D¢ you wish hardcopy printout (Y/N)? ",28
20 IF Z§="Y" THEN POKE 3,170
30 PRINT"Output to the correct device depending on Z§"

Any answer to Z$ other than ‘Y’ will output copy to the console
device. The following routine uses an LPRINT statement and has the
same effect:

10 INPUT "Do you wish hardcopy printout (Y/N)? ".Z§%
20 IF Z$="N" THEN POKE 3,105
30 LPRINT"Output to the correct device depending on 2§"

Any answer to Z$ other than "N’ will output copy to the printer.

After each such routine, or at the end of the program, another POKE
statement is needed to return the |/O BYTE back to the normal
configuration. Just use ‘POKE 3,169’ and all is well.

John Hafey
5636 Drake Ave.
Cleveland, OH 44127

24

REMark * June » 1984



LEARN A NEW WORD FOR YOUR VOCABULARY

ZPAY\ zé pa\n, 1: A computer payroll system for the Zenith and
Heath computer systems 2: The act or fact of paying or being paid 3:
The status of being paid by an employer

HOW NUCH

FREE SOFTWARE

COULD YOU USE? 022 ToniN birecrory
® SUPPLIED ON DISK FOR EASY COMPUTER ACCESS
@ HORE THAN 4,500 ENTRIES
® SUBJECT AREAS INCLUDE

ZPAY PpAYROLL SYSTEMS Presents
ZPAY available for ZDOS, IBM-PC Compatable or CPM
Some of the features available in the ZPAY Payroll System

« User Friendly — Menu Driven
« Pays by Hourly, Salaried & Commissioned
No interpreters necessary
Super FAST operation
Aftractive 3 ring binder manual
User changeable State & Federal tax tables
User selected pay periods
Maintains payroll records required by law
Prints out easy to use and read reports
Choice of two different check formats
s Plus many features of systems costing much more
May be seen at many Heathkit Electronic Centers or order yours
loday from ZPAY Payroll Systems — Only 51

ASTRONOMY, AVIATION, BUSINESS, EDUCATION, ENGINEERING,
GAMES, GRAPHICS, HAM RADIO, MUSIC, PROGRAMMING, TEXT
EDITING, VOICE SYNTHESIS, UTILITIES AND MUCH MORE,
Yes! I need to know what free software is available, BSend
me the public domaln

L
®
.
°
.
. o 3 samp oM 2 soFT 1 ousLe
. darertory on the mesth [l [l [

.

I purchased your 3 000 entry P. D. directory and want
to update it. 1 4 have enclosed a formatted disk with
S— 40K of free space and my check or M,0, for either $2

domeatic or $4 foreign S & H. Please put the update
Please send me ZPAY for D ZDOos D IBM-PC D CPM on my disk and rush it back. Offer expires 7-3l-84.

Name

Street
City State Zip
Phone . Visa/MC Card# __________ expires

Orders shipped by UPS. Enclose $100.00 plus $4.00 per order for
shipping and handling. Payment by check, money order, or Visa/
Master Card. Allow 2—4 weeks for delivery.

EmEAE HEADWARE TERKS: N0 RISK, MONEY

back guarantee,

Hﬂﬂ 2865 AKRON STREET domestic $4 foreign per
I EAST POINT GA. 30344 order for SsH. Enclose

your check or M.0., with
1 11| your order, Sorry, no

Name charge or phone orders.

Address

ZPAY pavroLL sYSTEMS
3516 Ruby Street « Franklin Park, IL 60131 » (312) 671-3364

=70 « TH Digital
City, State, Zip huam Corp. 9

E.A.SY

DISKSORT Executive Appointment Secretary cAl-I- Fon

Sort any Disk File Time management made EASY, cu HRENT PH'GING
Fast and easy-to-use stand-alone Throw away your appointment p »
SORT utiity. 30+ page maral | book and keep your Schckles ON ‘NEW
with many examplies. opecity. the EASY way. Specify ZD0S
ZD0S CP/M HDOS. $49.95 CP/M HDOS IBM KAYPRO. z-‘|50 com PUTEHS.

$49.95
SUNFLOWER SOFTWARE, INC. (913)631-1333
700S TOOLS 13915 Midland Drive, Dept. R4, Shawnee, KS 66216
AT

Thrs Programs DUALPORT e

for }!l)lll' H/Z-mﬂ C{}nnect a ?ﬂd Terminal to yuur S S T
UNDERLINE text on your screen Heath/Zenith computer. Specify SUNFLOWER SOFTWARE, INC.

SORT your ZDOS directory ZDOS CP/M HDOS. $39.95

Display serial port status. $24.95 13015 Midiana Drive, Dept. P,

Shawnee, KS 66216 {913)631-1333

[ Please, send me a free catalog
O H8 0 H/Z89 [J H/Z100

ZBERT S-BASIC NAME
] Write Structured
Fast Action Video Arcade Game BASIC Programs ADDRESS APT
and Graphics Editor, Requires You'l wonder how you ever CITy STATE ZIP

ZBASIC and full video RAM

* wrote programs without S-BASIC.
$29.95 Specify ZDOS CP/M HDOS. O VISA ACCT #
$49.95 O M/C EXP DATE
ITEM FORMAT PRICE
COLOR GAMES ZDUMP
Enjoy “Othello; “Battleship; . il -
“Blackjack’ “Isolation’ and Etéf}; lylcur ZD0S disks in Iﬁ: or
“Yahtzee" in color. Requires using cursor control keys.
ZD0S/ZBASIC and full video $29.95 Kansas 4':% G
RAM. $24.95 Shipping/Handling 2.00
: - Amount Enclosed

REMark * June = 1984 25



COBOL Corner VII

H. W. Bauman
493 Calle Amigo
San Clemente, CA 92672

Introduction

How did your Program #2 work out? Did you need the HUG COBOL
Disk-l PRGMO02.COB file to find your errors? If you could not find
your errors or you do not understand what we are doing, NOW IS
THE TIME to get on top of your problems! This is your COBOL
Corner, so let me hear from you (don’tforget the SASE, business size).

Style Summary

Before starting Program #3, let's review the programming style we
have and will use:

General Items
1. Make user-defined words meaningful and self-documenting.

2. Use hyphens in user-defined words to separate the English words
and abbreviations.

3. Do not use commas or semicolons in user-defined words.

4. Provide vertical line spaces between Divisions, Sections and
certain Paragraphs by inserting blank comment lines (“* in column
7).

5. Write only one (1) COBOL sentence, statement, clause or phase
per Coding Line,

6. When indentation is used, indent four (4) spaces. Exceptions are
cases where we desire vertical alignment or when 4 spaces consume
too much space on the Coding line. We will find this when we start
using Nested IF statements. Two (2) spaces will then be used.

Identification Division
1. Limit program-names to six (6) characters plus the extension.

2. Vertically align the Program-Name and Comment-Entries below
the “D” in Division.

3. A future ANS-COBOL Standard will be changing the following
Paragraph Headers to Comment-Lines to retain their documentation

value; thus, place an asterisk “*" in column 7 of each of these
Coding lines:

a. Author
b. Installation

c. Date-Written
d. Security

Some compilers supply the Date-Compiled comment with a Date, so
we will not use the ““*" for this line.

COBOL PROGRAMMING

Environment Division

1. Write the Select statement so the Assign clause begins on a
separate line. Indent the Assign clause 4 spaces.

2. Sequence the Select statements so the Input Files are first fol-
lowed by the Output File's Select statement.

3. DO NOT choose file-names that refer to specific Input/Output
devices (such as Disk-File).

Data Division

1. Write each clause of the FD entry on a separate line. Indent each
clause after the file-name.

2. Use the Record Contains clause of the FD.

3. Omit the Data Records clause of the FD. This clause will be
removed from the next COBOL Standard.

4. Indent each Data-Item subdivision 4 spaces (Level-Number 05 at
column 12, Level-Number 10 at column 16, and so on). Again if 4
spaces causes problems use 2 spaces.

5. Leave gaps between Level-Numbers (01,05,10,15 and so on).

6. Prefix all Data-Names of a record to help its documentation. The
prefix for each record should be unique and meaningful. In later

programs we will use suffixes so that you can decide which you like
best.

7. Conserve space on the Coding line by using self-explaining ab-
breviations where possible -- PIC, rather then the word Picture for
example.

8. Vertically align File Section Picture clauses.

9. Expressthefield length inthe picture character string by a number
enclosed in parentheses rather than by the repetition method -- PIC
9(04). vs PIC 9999. -- for example.

10. Do not use the 77 Level-Number. It is scheduled to be removed
by the next COBOL Standard. We will use Warking-Storage inde-
pendent data-items in collections of logically related fields using
Level-Numbers 01 thru 49 instead. Do not worry about this now. We
will clear it up as we use it.

Do you agree with our “‘style”’? Let me have your comments and
suggestions. We will expand on our style conventions in future
articles. You will learn these by repetition, repetition, etc.

26

REMark » june = 1984



Program Report Design

Up to now (Programs #1 & #2), we have designed programs to write
(Print-Out) the Body Area of a Report. If we are going to design
Reports that can be understood by more people, we must improve
our report design. When designing a report, the programmer should
provide three (3) general data areas:

1. Heading Area
2. Body Area
3. Total and Sub-Total Areas

Heading Area -- contains data that will identify the report. Exam-
ples of such data are Report Title, Organization Name, Report Date,
and Report Page Number, The bottom heading area usually provides
the Column Names for the following detail line fields printed in the
Body Area. We will provide Headings in future programs.

Body Area -- contains the detail lines as we have produced in
Programs #1 & #2. Sometimes this area will also have Summary
Lines and/or Sub-Total Lines. We will do some of these in future
programs.

Total Area -- is usually at the end of the report (as we will do in
Program #3). Common items include Record Counts, Final Totals for
columns and results of calculations (such as averages) which are
made after all applicable Input Records have been processed. De-
scriptive words to identify these total figures are usually provided.

Arithmetic Statements & Report Totals

Notice that the Total Area described above will usually involve
calculations. Therefore, if we are going to design a program with
Report Total Lines, we will have to include COBOL arithmetic verbs
into our program design. This will be one of the Program #3 prob-
lems. We will furnish a report with total lines. We will not attempt to
do headers at this time! That will be a few COBOL Corner articles
away.

Program #3

As COBOL Corner's System Analyst, | will supply you with the
instructions that you, the programmer, will need for your program
design. The program will be a Sales Report that will be printed from a

2. Transaction Amount will be computed by adding the Sales Tax
Amount to the Purchase Amount.

3. Count the number of records processed and accumulate the
count in Total Number Transactions accumulator.

C. For each record, print the following fields on the Sales Report
detail line in accordance with the format specified for the Output
Report Line:

1. Customer Name

2. Purchase Amount
3. Sales Tax Amount
4, Transaction Amount

D. Double-space each detail line.

E. Afterall the input records have been processed, the program shall
print the following total fields on the Sales Report:

1. Total Line #1

a. Total Number Transactions (computed by counting 1 foreach
order record).

b. Total Purchase Amount (computed by summing each order
record Purchase Amount into an Accumulator).

c. Total Sales Tax Amount (computed by summing each record
Sales Tax Amount into an Accumulator),

d. Total Transaction Amount (computed by summingitemband
item ¢ into an Accumulator).

e. Triple-space Total Line #1 down from the last detail line.

f. Place one (1) asterisk “*** after each dollar total amount,

2. Total Line #2
a. Average Purchase Amount (computed by dividing Total
Purchase Amount by Total Number Transactions and round
to nearest penny).
b. Label this total.
¢. Double-space Total Line #2 down from Total Line #1.

F. COBOL will be the programming language.

QUTPUT REPORT LINE FORMAT

: : : : ; PRINT
Transaction Order File stored on disk. This Report must contain the  posITIONS FIELD NAMES COMMENTS
Detail Lines and two (2) Total Lines.
DETAIL LINE
Program Specifications T
1-5 FILLER PROVIDE LEFT MARGIN
PROGRAM NAME: SALES REPORT PROGRAM ID: PRGMO3 6-29 CUSTOMER NAME
30-32 FILLER
3344 PURCHASE AMOUNT ZERO-SUPPRESS NON-SIGNIFICANT
Program Description: POLLAR POSITION ZEROS
INSERT COMMAS & DECTMAL POINT
; ; ; 4548 FILLER
This program prints a Sales Report from the Order Record Data File. ~ $3750 SAERE A AT ZERG—SUPPRESS NON-SIGNIFICANT
. DOLLAR POSITION ZEROS
Input File: INSERT COMMAS & DECIMAL POINT
The FILEL3.DAT contains the C N d the Purch i o
e 2, contains the Customer Name and the Purchase 63-74 TRANSACTION AMOUNT ZERO-SUPPRESS NON-SIGNIFICANT
Amount (File has other data that we use for another report). DOLLAR POSITION ZEROS
INSERT COMMAS & DECIMAL POINT
Ol.llpu! File T5-132 FILLER
Sales Report as specified below. TORAL LINE
List of Program Operations 1-8 FILLER PROVIDE LEFT MARGIN
4 10-27 PRINT “"TOTAL TRANSACTIONS"
A. Read each input order record. 28 FILLER
29-32 TOTAL NUMBER TRANSACTIONS ZERO-SUPPRESS NON-SIGNIFICANT
B. For each record, the program should compute the Sales Tax ZEROS
Amount and the Transaction Amount, 22 FILLER
3446 TOTAL PURCHASE AMOUNT ZERO-SUPPRESS NON-SIGNIFICANT
. I DOLLAR POSITION ZEROS
1. Sales Tax Amount will be computed by multiplying Purchase INSERT COMMAS & DECTMAL POINT
Amount by 6.5% sales tax. 47 PRINT AN ASTERISK "e"

REMark * June « 1984

27



48
49-60

61
62-63
64-76

T
T8-132

1-7
8-30

31-32
3344

45-132

FILLER
TOTAL SALES TAX AMOUNT

FILLER
TOTAL TRANSACTION AMOUNT

FILLER

ZERQ-SUPPRESS NON-SIGNIFICANT

DOLLAR POSITION ZEROS
INSERT COMMAS & DECIMAL POINT
PRINT AN ASTERISK "e"

ZERO-SUPPRESS NON-SIGNIFICANT

DOLLAR POSITION ZEROS
INSERT COMMAS & DECIMAL PQINT
PRINT AN ASTERISK "e"

TOTAL LINE #2

FILLER

FILLER
AVERAGE PURCHASE AMOUNT

FILLER

INPUT RECORD FORMAT

FIELD
LOCATION
1-2
3-8
6-29
30-70
T1-79

BO

PRINT "AVERAGE PURCHASE
AMOUNT"

ZERO-SUPPRESS NON-SIGNIFICANT
DOLLAR POSITION ZEROS
INSERT COMMAS & DECIMAL POINT

FIELD NAME DATA CLAUSE COMMENTS
RECORD CODE ALPHANUMERIC CODE "L3"
FILLER
CUSTOMER NAME ALPHANUMERIC
FILLER
PURCHASE AMOUNT NUMERIC ASSUMED DECIMAL

FILLER

POINT BETWEEN
COLUMNS 7T & 79

Note: Input Transaction File contains other fields that we will not use
in Program #3. We will use them in our next program.

Programmer’s Work

Using the above facts, you the programmer, are now ready to de-
velop the Sales Report Program Phase by Phase. You should now
know these. If not, go back to previous COBOL Corner articles for a

05 FILLER PIC X(01).
05 TL-TOTAL-PURCHASE-AMT PIC 2Z,22Z,22Z.99.
05 TL-ASTERISK-1 PIC X(01).
05 FILLER PIC X(01).
05 TL-TOTAL-SALES-TAX—AMT PIC Z,2ZZ,22Z.99.
05 TL-ASTERISK-2 PIC X(01).
05 FILLER PIC X(02).
05 TL-TOTAL-TRANSACTION-AMT PIC 2Z,22Z,2ZZ.99.
05 TL-ASTERISK-3 PIC X(01).
05 FILLER PIC X(55).
01 AT-TOTAL-LINE-2.
05 FILLER PIC X(09).
05 AT-PURCHASE-WORDS PIC X(23).
05 FILLER PIC X(02).
05 AT-AVERAGE-PURCHASE-AMT PIC Z,222,222.99.
05 FILLER PIC X(86).
WORKING-STORAGE DIVISION
01 WS-SWITCHES.
05 WS—END-OF-FILE-SWITCH PIC X(03).
01 WS—WORK—AREA.
05 WS-WORK-TAX-AMT PIC S9(06)V99.
01 WS-TOTAL-ACCUMULATORS.
05 WS—TOTAL-NO-TRANSACTIONS PIC S9(04).
05 WS-TOTAL-PURCHASE—AMT PIC S9(0B)Ve9.
05 WS—TOTAL—SALES-TAX-AMT PIC S9(07)Ve9.
05 WS—TOTAL-TRANSACTION-AMT PIC S9(08)V99.

PROCEDURE DIVISION

XXXXXX PRINT-SALES-REPORT.

review. Remember that we DO NOT want to proceed without doing
these Phases first! If you do, you will not be prepared when we get to

the complicated programs,

Coding Help

| will start you out on the new programming ideas we will be using.

Here they are:

INPUT RECORD-DESCRIPTION

01 OF-QORDER-FILE.

05 FILLER PIC X(O5).
05 OF-CUSTOMER-NAME PIC X(24).
05 FILLER PIC X(41).
05 OF-PURCHASE-AMT PIC 9(07)Ve9.
05 FILLER PIC X(D1).
OUTPUT RECORD-DESCRIPTION
01 SR-SALES-REPORT.
05 FILLER PIC X(O05).
05 SR-CUSTOMER-NAME PIC X(24).
05 FILLER PIC X(03).
05 SR-PURCHASE AMT PIC Z,22Z,22ZZ.99.
05 FILLER PIC X(04).
05 SR-SALES-TAX-AMT PIC 22Z,72Z.99.
06 FILLER PIC X(04).
05 SR-TRANSACTION-AMT PIC Z,22Z,22Z.99.
05 FILLER PIC X(58).
01 TL-TOTAL-LINE-1.
05 FILLER PIC X(09).
05 TL-TRANSACTION-WORDS PIC X(18).
05 FILLER PIC X(01).
05 TL-TOTAL-NO-TRANSACTIONS PIC 2279,

XXXXAX OPEN INPUT FILEL3

X00AAX OQUTPUT SALES-REPORT.

XXX PERFORM INITIALIZE-VARIABLE-FIELDS.

XX0IXX READ FILEL3

XXNAXX AT END

X000 MOVE "YES" TO WS-END-OF-FILE-SWITCH.
10000 PERFORM PROCESS-SALES-REPORT

XX00XX UNTIL

XXXAAX WS—END-OF-FILE-SWITCH IS EQUAL TO "YES".
XX000X PERFORM PRINT-TOTAL-LINE-1.

XXAAXX PERFORM PRINT-TOTAL-LINE-2.

XAAAAX CLOSE FILEL3

XXXXXX SALES-REPORT.

X000 STOP RUN.

XXXNAA INTITIALIZE-VARIABLE-FIELDS.

000X MOVE "NO " TO WS-END-OF-FILE-SWITCH.
XXXAAX MOVE ZEROS TO WS-TOTAL-ACCUMULATORS.
XXXXXX PROCESS—SALES-REPORT.

XXXXXX MOVE SPACES TO SR-SALES-REPORT.
X0 MOVE OF-CUSTOMER-NAME TO SR-CUSTOMER-NAME,
XAAAXX MOVE OF-PURCHASE-ANMT TO SR-PURCHASE-AMT.
XAXXXX MULTIPLY OF-PURCHASE-AMT

X000 BY .065

000X GIVING WS—WORK-TAX~AMT ROUNDED

XAXXXX MOVE WS—-WORK-TAX—AMT TO SR-SALES-TAX-AMT.
K00 ADD OF-PURCHASE-AMT WS-WORK-TAX—-AMT

XXXXXX GIVING SR-TRANSACTION-AMT.

XXXXXX DISPLAY SR-SALES-REPORT.

X000 WRITE SR-SALES-REPORT

XXX AFTER ADVANCING 2 LINES.

X0 ADD 1 TO WS—TOTAL-NO-TRANSACTIONS.
XXXAXX ADD OF-PURCHASE-ANMT TO W5-TOTAL~PURCHASE-AMT.
XXX ADD WS—-WORK-TAX—AMT TO WS—TOTAL-SALES-TAX-AMT.
XXX ADD QF-PURCHASE-AMT WS—-WORK-TAX—-AMT

XXXXXX TO WS-TOTAL-TRANSACTION—-AMT .
X000 READ FILEL3

XAXXXX AT END

0O MOVE "YES" TO WS—-END-OF-FILE-SWITCH.
XXAXXX PRINT-TOTAL-LINE-1.

O0XXX

MOVE SPACES TO TL-TOTAL-LINE-1.

28

REMark + June + 1984


http:Z,ZZZ,ZZZ.99
http:ZZZ,ZZZ.99
http:Z,ZZZ,ZZZ.99
http:Z.ZZZ.ZZZ.99
http:ZZ.ZZZ,ZZZ.99
http:Z.ZZZ,ZZZ.99
http:ZZ.ZZZ,ZZZ.99

J000XX MOVE "TOTAL TRANSACTIONS"

X000 TO TL-TRANSACTION-WORDS,
X000 MOVE WS-TOTAL-NO-TRANSACTIONS

0000 TO TL-TOTAL-NO-TRANSACTIONS.
20000XX MOVE WS-TOTAL-PURCHASE-AMT

00000 TO TL-TOTAL-PURCHASE-ANT.
X000 MOVE WS-TOTAL-SALES-TAX-AMT

XAAAXX TO TL-TOTAL-SALES—-TAX-AMT.
XXX MOVE WS—-TOTAL-TRANSACTION-ANT

jaseded TO TL~TOTAL-TRANSACTION-AMT.
XXX MOVE "*" TO TL-ASTERISK-1

XXXXXX TL-ASTERISK-2

XXXxXxx TL-ASTERISK-3.

X0 DISPLAY TL-TOTAL-LINE-1.

XXXXXX WRITE TL-TOTAL-LINE-1

XXXXXX AFTER ADVANCING 3 LINES.

KXXXXX PRINT-TOTAL-LINE-2.

XXXXXX MOVE SPACES TO AT-TOTAL-LINE-2.
XXXXXX MOVE "AVERAGE PURCHASE AMOUNT"

XXXXXX TO AT-PURCHASE-WORDS.
XXX DIVIDE WS-TOTAL-PURCHASE-AMT

XXXXXX BY WS-TOTAL-NO-TRANSACTIONS

XXX GIVING AT-AVERAGE-PURCHASE-AMT ROUNDED.
XX DISPLAY AT-TOTAL-LINE-2.

XXXXXX WRITE AT-TOTAL-LINE-2

XXXXXX AFTER ADVANCING 2 LINES.

Closing

The next COBOL Corner will explain the many new programming
ideas shown above. We will explore Picture clauses, working-
storage uses, and some of the COBOL computing verbs. So, if you do
not understand all of this article, we hope to clear it up next time!
However, for your ““homework”, please do the following:

1. Develop Program #3 Phase by Phase.
2. Fill out your Code forms.
3. Key-In the Code.

To help with the above assignment, you may want to refer to your
COBOL-80 Manual for information on Picture clauses, Add, Sub-
tract, and Multiply verbs. Until next time, good COBOL computing.

Dear Readers,

Many “COBOL Corner” readers have asked me if and how they
could use Ellis Nevada COBOL with this series. | advised the readers
that | had purchased the software and that | had tested it with the
H-8/H-89 and H/Z-100 (8085), and as a result of this testing that |
had prepared a series of articles and a program /data disk for RE-
Mark.

Walt Gillespie, REMark’s editor, approved the articles for publica-
tion, but now advises me that he cannot devote the REMark space for
both “COBOL Corner” and “Nevada COBOL” articles in the same
issue. Thus, to not cause an interruption in the “COBOL Corner”
series, | am offering to supply the ““Nevada COBOL" articles and the
program /data disk.

I will provide the series on either two (2) CP /M hard sector disks or a
CP/M soft sector disk for $25.00 including shipping. These will
provide you with the necessary starting information and the working
program /data files that you need to work along with the “COBOL
Corner” series using the Ellis Nevada COBOL software on your
H-8/H-89 or H/Z-100 (8085 CP/M). Be sure to advise me which
format you require,

The regular COBOL-80 readers will still order their program /data
disk from HUG.

H. W. Bauman
493 Calle Amigo
San Clemente, CA 92672 %

/ FLOPPY DISK \
CONTROLLER

Controls Any Combination Of Up To Four
8" and 5," Drives

This easy to install plug in board can control any
combination of single or double sided, single or
double density drives.

Designed especially for H88/H88 users

e Fully compatibie Bios supplied for your CP/M
2.2 operating system

Easy to follow instructions
Contains controller board with boot prom
Order cables for connections $15 (HFDC-110)

Latest technology for enhanced reliability, min-
imal power consumption

Quantity and user group discounts available

INTRODUCTORY OFFER
$395

Order HFDC-100

NORTH
©OAST

”NTELLIGENCE
NC.

CP/M 22 Trademark ol Drgital Research Corp
HE88/HE9 Trademark ol Heah Cao

ORDER FORM

Name

@
o

City Seate Zip

Phone | )

O | am interested in what the HFDC-100 can do for
my system, please send me more information.

O | need the expansion the HFDC-100 can
provide. Please rush me:
— HFDC-100

Please indicate payment below
O VISA  Account #
O M.C. Expiration Date

O Check or Money Order Enclosed

HFDC-110

Mail to: 1201 Cherokee Trail, Willoughby, Ohio 44094
Phone: 216-946-7756

REMark * June * 1984

29



Now, you can get a full-screen text editor
as easy to use as (PIE).
You get the frosting on the CAKE
with the following additional benefits:

* file and command-key compatibility with the popular
and reliable PIE editor.

* system file control while running CAKE which allows

* you can merge other files with the file you are cur-
rently editing.

* you can selectively save portions of the file you are
currently editing.

* you can easily format your text by setting margins,
combining and dividing lines, and controlling TAB
functions.

you to obtain file directories, delete files, and list files.

‘ A K [ (Cursor And Keypad Editor)

Now you can have your CAKE, and edit too!
And to sweeten the offer
now you can save $10.00

CP/M version Regularprice ................ $49.95
(requires 32K)  Special HUG price. ... .. $39.95

(first 500 orders!)
ZDOS version Regularprice ................ $59.95
(requires 128K) Special HUG price. .. ... $49.95

(first 500 orders!)

LIMITED TIME OFFER
CALL YOUR ORDER IN TODAY!

Add $2.00 for shipping. Michigan residents add 4% for sales tax,
PAYMENT IN U.S. FUNDS, PLEASE.

GENERIC SOFTWARE

PIE is a registered trademark of Thamas Crosley.

P.O. Box 790 - Dept. 684R
MARQUETTE, MI 49855
906-249-9801

For Faster Delivery 10 AM - 5 PM EST

Call 906-249-9801

Call or write for more information and ocur FREE calalog.
Controlled Data Recording Systems Inc.

ANNOUNCING THE FDC-H8

DOUBLE DENSITY 8’> AND 5.25”’ CONTROLLER FOR THE H8 COMPUTER
Has all of the capabilities of our popular FDC-880H controller, with the added features of;
Direct memory access (DMA) data transfer.
Hard sectored controller (H17) incorporated on the board.
» Runs with the standard 8080 CPU card and with Z80 CPU upgrades.
Accesses both hard sectored disk formats and soft sectored disk formats through the same

drives attatched to the FDC-H8 without hardware additions. Price $495.00
NEW PRODUCTS FOR THE FDC-880H
DM-1 DUAL BOARD MODIFICATION KIT $29.95

Al[ows fO( both the FDC-880H and the H88-4 controller cards to interface with the same 5.25”
drives. Drives will run as both hard sectored format and soft sectored format depending upon the
logical drive letter.

CDR BIOS by Livingston Logic Labs $60.00
Enhanced version of Heath/Zenith CP/M 2.203 BIOS with ZCPR. Supports all Heath/Zenith disk
formats through the FDC-880H and the H17 controllers.

CDR DVD by Livingston Logic Labs. $40.00
HDOS driver for running double density HDOS through the FDC-880H

Shugart Slimline 5.25” 40 track double sided drives $275.00

Shugart Slimline 8” double sided drives $525.00

Contact: C.D.R. Systems Inc.
7210 Clairemont Mesa Blvd, San Diego CA92111

5-20 day delivery—pay by check, C.0.D,, Visa, or M/C Telephone: (619) 560-1272

30 REMark « June + 1984




Terminal Control With H/Z-100
Using MS: FORTRAN and MACRO-86

BAS]C remains the most popular language
for microcomputer beginners. Unfortunate-
ly, it is also one of the slowest languages.
This can be tolerated for programs which are
run only a couple of times. But if you have a
completely debugged program which is
used frequently, then even a thirty second
delay seems interminable. One of the possi-
ble solutions is to buy a BASIC compiler and
compile the frequently used programs. The
three hundred and odd dollars price tag on
the compilers is not very encouraging, to say
the least. Since | already have the Microsoft
FORTRAN-86 compiler, | decided to trans-
late my BASIC programs into FORTRAN to
give me a compiled version.

It may come as a surprise to many beginners
that FORTRAN, essentially a main-frame
computer language, is the closest relative of
BASIC which is widely identified as a mi-
crocomputer language and it is rather simple
to translate one to the other. However, some
of the most useful features of BASIC are sim-
ply not available in FORTRAN, though it is
possible to find similar commands to do the
same job. As an example, the ‘FOR...NEXT"
loop of BASIC is not available in FORTRAN
but can be effectively replaced by the
‘DO...CONTINUE’ loop. String handling,
which is one of the strong features of BASIC,
is rather primitive in FORTRAN. Also FOR-
TRAN does not have anything equal to the
graphics and terminal control commands of
BASIC such as ‘LOCATE m,n’ etc. This need
not discourage us. Most of the terminal con-
trol commands can be added to FORTRAN
by writing simple subroutines to do the job.
Often these subroutines will have to use sys-
tem specific escape codes and hence the
subroutines as well as the main programs
that utilize them are not transportable to
other computers, sacrificing ane of the im-
portant advantages of FORTRAN. The ES-
CAPE codes of ZORRO the H/Z-100 are
organized very cleverly and we can use
these very effectively to control the terminal
output. In this article, | will try to illustrate

M. Manivannan
Department of Chemical Engineering
Clarkson College of Technology

Potsdam, NY 13676

Listing 1. FORTRAN Graphics Subroutines CLS.FOR and LOCATE.FOR

to clear Screen, Cursor to Row 1, Col 1
SUBROUTINE CLS
CHARACTER ESC
ESC = CHAR(27)
WRITE(1,10)ESC
10 FORMAT(1H ,A1,'E')
END

c To locate the gursor to IROW and ICOL
SUBROUTINE LOCATE(IROW,ICOL)
CHARACTER IR,IC,ESC
COMMON /AREA/ESC
IR=CHAR(IROW+31)

IC=CHAR(ICOL+31)

WRITE(*,10)ESC,IR,IC
10 FORMAT(1H ,A1,'Y',2A1\)

RETURN

END

Listing 2. Required assembly coding for interfacing with FORTRAN.

DGROUP GROUP DATA 1See Note on FORTRAN manual page 76.
CODE segment 'CODE'
assume CS:CODE, DS:DGROUP ,SS:DGROUP
PUBLIC CLS : '"PUBLIC' declaration enables
: a FORTRAN main program to call
; the subroutine named CLS

CcLs PROC FAR ; 'FAR' declaration enables
; inter segment call
PUSH EP :Save caller's frame pointer
MOV EP,SP :Set up our frame polnter

*aotual code goes here* 2
POP BP ;Restore caller's frame polnter
RET ;This is a FAR return. This alone is
;sufficient for any assembly subroutine
ithat does not pass any varlable to
;or from the calling program.
CLsS ENDP

CODE  ends
DATA  SEGMENT PUBLIC 'DATA'

DATA  ENDS
end

REMark + June - 1984

31



how to write the subroutines in FORTRAN
and (don't be scared) assembly language.

Most of the readers of REMark magazine
should be familiar with the use of escape
codes for terminal control. Using these
codes with MBASIC has been illustrated in
several articles in REMark (for example see
P. Swayne, Issue 43 page 15 and D. War-
nick, Issue 46 page 25). Most of these termi-
nal control commands are standard in
ZBASIC and the user who starts with ZBASIC
may not be familiar with the escape codes.
These readers should have a good look at the
appendix B, chart 3 of the H/Z-100 user's
manual and appendix O of the ZDOS man-
ual, vol. 2. Detailed explanations for these
codes are also available in the Technical
manual beginning at page 10.42 of vol. 1.

If you are not willing to devote some time to
learn assembly language but still want to
control terminal output with FORTRAN,
take heart, you can write the subroutines in
FORTRAN itself. For this, you would find the
article by Mr. John Sams in the May 1983
REMark (Issue 40, page 44) very helpful. This
article, ‘ESCAPE with FORTRAN and PAS-
CAL’, dealt with the use of escape codes for
the H/Z-89 in FORTRAN-80 and Lucidata
Pascal. Some modifications are necessary to
write these subroutines in FORTRAN-86 for
ZORRO the H/Z-100. The modifications
required are illustrated in Listing 1. (The
readers are reminded that all the listings are
for their personal use only and the author
reserves all the commercial rights.)

There are two important modifications to
note. First, in FORTRAN-86, we use Charac-
ter Declaration instead of Byte for the vari-
able ESC. Secondly, we use the intrinsic
function CHAR to get the character value for
the ASCII integer code. These two changes
alone are enough to make all the
FORTRAN-80 programs given by Mr. Sams
to run equally well on the ZORRO with
FORTRAN- 86. With FORTRAN-80, Mr.
Sams had to adopt some clever program-
ming tricks to position the cursor and write
the message. As he explained, the format
processor in FORTRAN forces a new line
automatically before it executes the format
specification of the WRITE statement. This
automatic carriage return can be supressed
with FORTRAN-86 by using a backslash (‘\’)
descriptor, which tells the format processor
to print on the current line. Using this, | was
able to position the cursor with the write
statement in the FORTRAN subroutine itself
unlike Mr. Sams who was forced to use the
calling program for that purpose. Hence the
LOCATE subroutine positions the cursor just
like the LOCATE statement of ZBASIC.

Listing 3. Assembly Language subroutine CLS.ASM.

;Clear Screen — Assembly language subroutine for FORTRAN and Pascal

;FORTRAN calling sequence:

. CALL CLS

DOSF_OUTSTR EQU 09H

DOSI_FUNC EQU 21H
Page . 132

DGROUF GROUF DATA ;See Note on FORTRAN manual page 76.

CODE segment 'CODE' ;Subroutine to clear scgreen
assume CS:CODE, DS:DGROUP ,S5:DGROUP,ES:NOTHING

PUBLIC CLS

CLS FROC FAR ;Allows inter segment call
PUSH BP ;Save caller's frame polinter
MOV BP,SP ;Set up our frame pointer

START: PUSH DS ;Save caller's Data Segment
;Point DS:DX to beginning of

MOV AX ,DATA string to be printed out
MOV DS, AX ;Set up our Data Segment
MOV DX,0FFSET MESG ;Get message address
MOV AH,DOSF_OUTSTR ;Get function to output message
INT DOSI_FUNC ;Print message

END: POP Ds ;Restore caller's Data Segment
POP BP ;Restore caller's frame pointer
RET

CLS ENDP

CODE ends

DATA SEGMENT PUBLIC 'DATA'

;ESC, CLS, END_CHAR

MESG DB % TBY: '$

DATA ENDS
end

Most of the terminal control commands one
might need can be written in FORTRAN-86.
Tnen, you might ask, why take the trouble to
write these in assembly language. FOR-
TRAN code is not exactly very efficient. It is
slower than the straight forward assembly
coding and produces a much larger code.
The FORTRAN object code size for each of
the terminal command subroutines varies
between 500 to 600 bytes and the eventual
executablefile is quite large. There are about
twenty five terminal control commands and
the total size of all these subroutines will be
at least 12K. | found thatif | wanted to create
a graphics library with the objective codes
generated by subroutines written in FOR-
TRAN, the library would be unnecessarily
big. The same subroutines written in assem-
bly language generate an object code 1/5th
the size of the FORTRAN code. In addition,
writing assembly language subroutines to do
the same job is quite elementary. The ZDOS
manual (appendix P) and the FORTRAN
manual (Chapter 7) give some good example
programs. Following the example in the
FORTRAN manual, the assembly language
subroutines can be easily interfaced with
FORTRAN.,

The minimum required assembly language

coding thatis necessary for any subroutine to
be interfaced with a FORTRAN calling pro-
gram, is shown in Listing 2. | have used
comments liberally to make it very easy to
follow the program. The FORTRAN com-
piler manual advises that the data used by
assembly language routines must be placed
in a segment whose name is DATA, whose
class name is ‘DATA’, and should be
grouped in DGROUP. This will become
clear with an example | will be using shortly.
The manual also requires the ASSUME
statement. This statement reserves a
maximum of 64K segment for the part of the
program we name in the assurne statement.
We have to put the code in the CS statement
and use DGROUP for DS and SS segment
(CS, DS, SS, and ES are short for code, data,
stack, and extra segments respectively). The
rest of the code is self-explanatory.

Before | clarify the RET instruction, | should
discuss the types of subroutines we will be
concerned with. To give BASIC-like features
to FORTRAN, we need to write three or four
types of assembly language routines. The
first and simplest type just needs to be called
from the main program. It is essentially self
sufficient. Routines that clear the screen,
beep at the terminal, etc., belong to this type.

32

REMark + June + 1984



These routines do not pass any variables to
and from the calling program and hence use
asimple RET instruction to pass control back
to the main program. In this segment, | will
be primarily discussing this type of assembly
subroutines.

All the other types of assembly routines
‘communicate’ with the main program by
passing variables and hence additional
parameters are pushed on the stack. De-
pending on the type and number of the
passed variables, the number of bytes
pushed on the stack will vary. This should be
kept track of and the corresponding bytes
should be popped back by an appropriate
RET N instruction where N is the number of
bytes to be returned. The routines for cursor
positioning, color setting, string handling,
and graphics are included in these types. |
will discuss the first two routines of this type
in a future article,

The simpler type routine is illustrated in List-
ing 3. It closely follows the model described
in Listing 2. This routine uses the print string
function of the interrupt command. We put
the string to be printed out in the DATA
segment and declare it public. The string is
named as MESG and it ends with a dollar
sign to indicate the end of the string to the
interrupt routine. The ASCIl decimal code
for ESC is 27 (= 1B hex) and the code to clear
the screen is ESC followed by ‘E’. We start
our program by loading DATA segment into
DS. Since we cannot directly alter DS regis-
ter, we load AX register with DATA and then
move AX to DS register. Next, we get the
address of the MESG string into DX register
by using the OFFSET directive. Now DS:DX
pointstothe string to be printed out. Next we
load DOS function outstring code
DOSF_OUTSTR (which is equal to 9) into
AH register followed by the function inter-
rupt call. We will be using this interrupt call
INT DOSI_FUNC or INT 21H quite often so
it is good idea to browse through appendix |
of ZDOS manual. Incidentally, by replacing
the MESG line of example 2 in appendix P
(page P.5) with that given in Listing 3, and
running that example, you will have a clear
screen command available to you at the
DOS level.

If you compare the example program to List-
ing 3, you would also notice that | am not
including the DEFASCII.ASM and DE-
FMS,ASM programs. The example method is
the preferred way to write the programs.
However, the programs | will be describing
use only two variables (DOSI_FUNC and
DOSF_OUTSTR) which will need to be de-
fined by the externai include programs. Fol-
lowing the example program in this case
only increases the assembling time since the
assembler has to look up the include files. If

Listing 4. Graphics Subroutine TERMGRAF.ASM

:Sereen Graphics — Assembly language subroutine for FORTRAN and Pascal;
;Program Name : y
;Author

;Created
;Edited
:Revised

; FORTRAN

TERMGRAF . ASM
: M. Manivannan

Dept. of Chem. Engg., Clarkson College of Technology

(C) 1984 Version: 1.01

Potsdam, NY 13678

: 28 Dec B3
: 31 Dec B3
: 5 Jan B4

calling sequence

CALL CLS
CALL REVON
CALL REVOFF
CALL KEYON
CALL KEYOFF
CALL SCRLON
CALL SCRLOF
CALL GRAFON
CALL GRAFOF
CALL CSRON
CALL CSROFF
CALL BLKCSR
CALL LINCSR
CALL CLIKOF
CALL CLIKON

- all commercial rights reserved by the author.

Purpose
:To Clear Screen
:To turn Reverse Video On
:To turn Reverse Video Off
:To enable the 25th line
:To disable the 25th line
:To go into the Screen Scroll mode
:Te go into the Screen Hold mode
:To turn Graphics mode on
:To turn Graphics mode off
:To turn Cursor on
:To turn Cursor off
:To set block cursor
:To set line cursor
:To turn key-click off
:To turn key-click on

4 CALL BEEP :To glve a BEEP at the terminal
PAGE 132

DOSF_OUTSTR EQU 9 ;Function to output string

DOSI_FUNC EQU 21H ;Function interrupt

DGROUP GROUP DATA :See Note on FORTRAN manual page T6.

GRAPHICS_CODE

segment

‘CODE'

:Subroutine for screen graphics

assume CS:GRAPHICS_JODE, DS:DGROUP ,SS:DGROUP,ES:NOTHING

PUBLIC CLS,REVON, REVOFF,KEYON,KEYOFF, SCRLON, SCRLOF, GRAFON, GRAFOF
PUBLIC CSRON,CSROFF,BLKCSR,LINCSR,CLIKOF, CLIKON, BEEP

START

MACRO
PUSH BP ;Save caller's frame pointer
MOV BP,SP ;Set up our own frame pointer
PUSH ps ;Save caller's Data Segment
MOV AX,DATA ;Set up our Data Segment
MOV DS, AX ;Get address of message
POP Ds ;Restore caller's Data Segment
ENDM
PRINT MACRO DOSF
MOV AH,DOSF ;Get function to output message
INT DOSI_FUNC ;Print message
ENDM
FINISH MACRO
POP BP ;Restore caller's frame polnter
RET
ENDM
PRINT_MSG MACRO MESG
START
MOV DX,0FFSET MESG ;Get message address
PRINT DOSF_OUTSTR ;Print string
FINISH
ENDM
cLs PROC FAR
PRINT_MSG MSG_CLS :Output message
CLS ENDP
REVON PROC FAR
PRINT_MSG MSG_REVON
REVON  ENDP
REVOFF PROC FAR

REMark * June * 1984

33



PRINT_MSG MSG_REVOFF

REVOFF ENDP

KEYON  PROC FAR

PRINT_MSG MSG_KEYON

KEYON  ENDP

KEYOFF PROC FAR

PRINT_MSG MSG_KEYOFF

KEYOFF ENDP

SCRLON PROC FAR

PRINT_MSG MSG_SCROLLON

SCRLON ENDP

SCRLOF PROC FAR

PRINT_MSG MSG_SCROLLOFF

SCRLOF ENDP

GRAFON PROC FAR

PRINT_MSG MSG_GRAPHON

GRAFON ENDP

GRAFOF PROC FAR

PRINT_MSG MSG_GRAPHOFF

GRAFQF ENDP

CSRON PROC FAR

PRINT_MSG MSG_CURSORON

CSRON  ENDP

CSROFF PROC FAR

PRINT_MSG MSG_CURSOROFF

CSROFF ENDP

BLKCSR PROC FAR

PRINT_MSG MSG_BLOCK_CURSOR

BLKCSR ENDP

LINCSR PROC FAR

PRINT_MSG MSG_

LINCSR ENDP

LINE_CURSOR

CLIKOF PROC FAR

PRINT_MSG MSG_CLICKOFF

CLIKOF ENDP

CLIKON PROC FAR

PRINT_MSG MSG_CLICKON

CLIKON ENDP

BEEP PROC FAR

PRINT_MSG MSG_BEEP

BEEP ENDP
GRAPHICS_CODE ends
DATA SEGMENT PUBLIC

ESC EQU
END_CHAR EQU
MSG_CLS DB
MSG_REVON DB
MSG_REVOFF DB
MSG_KEYON DB
MSG_KEYOFF DB

MSG_SCROLLON DB
MSG_SCROLLOFF DB
MSG_GRAPHON DB
MSG_GRAPHOFF DB
MSG_CURSORON DB
MSG_CURSOROFF DB
MSG_BLOCK_CURSOR DB
MSG_LINE_CURSOR DB
MSG_CLICKOFF DB
MSG_CLICKON DB
MSG_BEEP DB
DATA  ENDS
end

"DATA'
; ESC, MSG_CHAR , END_CHAR

27
l.l
ESC,'E' ,END_CHAR
ESC,'p' ,END_CHAR
ESC,'q' ,END_CHAR
ESC, 'x1', END_CHAR
ESC, 'y1',END_CHAR
ESC, '\' ,END_CHAR
ESC,'[' .END_CHAR
ESC,'F' ,END_CHAR
ESC, 'G' ,END_CHAR
ESC, 'y5',END_CHAR
ESC, 'x5', END_CHAR
ESC, 'x4 ', END_CHAR
ESC, 'y4',END_CHAR
ESC, 'x2', END_CHAR
ESC, 'y2' ,END_CHAR

07 , END_CHAR

you make those ubiquitous typographical er-
rors as often as | do, you will be spending
awfully long minutes waiting for the assem-
bler to finish the job. That explains why |
chose to define those variables in this pro-
gram itself. However, if you will be using a
lot of the system defined variables, you
would be better off including the define files.
Another thing that might interest the begin-
ner is the comparison between the Listing 3
and the ”.COD" file developed by the FOR-
TRAN compiler for Listing 1. To get the lat-
ter, you should run PAS3 of the FORTRAN
compiler. You would leamn quite a bit from
that *“.COD" file!

We can write all the simpler type terminal
command routines just like Listing 3 by using
appropriate escape codes and renaming the
program. We will then have about 15 indi-
vidual object codes to be linked to the FOR-
TRAN program. Nobody likes to type 15
names every time one wants to use the ter-
minal command routines. To avoid this, we
have two choices. The first one is to use the
LiBrarian that comes with the ZDOS Il disk.
This bundles all of our routines into a neat
little library and we can use this library along
with FORTRAN library at the time of linking.
More about this a little later. The second
method is to optimize the code by bundling
together all the similar routines into a single
subroutine. This method may not always
work, but when it does, it reduces the object
code size quite a bit. Listing 4 shows how
this could be accomplished.

Itis obvious that all these subroutines use an
identical procedure. Each of these push the
same parameters on to the stack, perform the
same interrupt and pop the same parameters
back. The only difference comes from the
fact that the data required by each of these
subroutines is different. So, to make the
programming simple, | decided to use the
macro facility. This facility allows a set of
frequently used instructions to be written as
a block. The advantage of this method is the
elimination of recoding of these instructions
each time they are encountered. This facility
does not, however, reduce the object code
size; it simply saves us a lot of typing and
reduces the source code size. Another ad-
vantage of the macro facility is the use of the
dummy argument. With this, we can use the
same macro block for several subroutines. In
Listing 4, the macro PRINT_MSG is common
to all the subroutines. This macro has the
dummy variable MESG which is replaced by
an appropriate message variable in each of
the subroutines. The macro PRINT_MSG it-
self contains three additional macro calls. Of
these, the macros START and FINISH just do
the pushing and popping and the macro
PRINT uses the interrupt routine to print a
string. Now, it is easy to add any subroutines

34

REMark = June = 1984



to this program simply by using the appro-
priate MACRO calls. This program should
now be assembled using the “MASM
TERMGRAF;”" command and the
TERMGRAF.OB] file should be copied on
the FORTRAN working disk.

The calling program in FORTRAN is given in
Listing 5. To compile a FORTRAN program
with a single drive is not exactly a pleasure. |

Listing 5. Fortran Calling Program SCREEN.FOR.

PROGRAM SCREEN
INTEGER LINNUM
CHARACTER ESC
COMMON /AREA/ESC
CALL SCRLOFF

1 WRITE(*.5)

do it this way. | have the files FOR1.EXE,
PAS2.EXE, and PAS3.EXE all on a single
non-system disk along with the RUN-
FORT.BAT file given in Listing 6. | also copy
the FORTRAN source file to this disk and run
the batch file RUNFORT. After compiling, |
copy the object code to the FORTRAN work-
ing disk which contains the LINK.EXE, FOR-
TRAN.LIB, and LIB.EXE files. An executable
run file can now be created by LINKing

FORMAT(1H ,'ENTER THE NUMBER OF THE BOTTOM LINE')

READ(*, * ) LINNUM
IF (LINNUM .EQ. O) GOTO 999
ESC =CHAR(27)
CALL CLS
CALL BEEP
CALL LOCATE(12,35)
WRITE(*,10)
10  FORMAT(1H ,'CENTER OF SCREEN')
CALL KEYON
CALL BEEP
CALL LOCATE(LINNUM,30)
CALL REVON
WRITE (*,20)

20  FORMAT(1H , 'WELCOME TO 25TH LINE')

CALL LOCATE(1.1)
CALL REVOFF
WRITE(*,30)
30  FORMAT({1H ,'QUIT AT THE TOP')
GOTO 1
999  CALL KEYOFF
CALL CLS
CALL SCRLON
CALL BEEP
END

Listing 6. RUNFORT.BAT  FILE

A:FOR1 1;

PAUSE .... If no errors, press RETURN to run PAS2 else press <CTRL C>.
A:PAS2

PAUSE *#**% If no errors, press <CTRL C> else press RETURN to run PAS3
A:PAS3

Listing 7. RUNNING LIB COMMAND
A:LIB

Microsoft Library Manager Vi.02

(C) Copy right 1981 by Microsoft Inc

Library File:TCONTROL <RETURN>

Library does not exist. Create? YES <RETURN>
Operations:+TERMGRAF+LOCATE+YOURFILE <RETURN>

List file: TCONTROL.LST <RETURN>

Listing 8. RUNNING LINKER

LINKER PROMPT USER ENTRY
Object Modules [.0BJ]: SCREEN
Run File [SCREEN.EXE]:

List File [NUL.MAP]:
Libraries [.LIB]: FORTRAN+TCONTROL

KEY PRESSED

RETURN
RETURN
RETURN
RETURN

SCREEN.OB], the compiled FORTRAN file
to TERMGRAF.OB]J, the assembled version
of TERMGRAF.ASM. This procedure re-
quires only the FORTRAN.LIB as the library
file. However, you might decide to have
your terminal control command subroutine
files to be linked to the FORTRAN object
code. In a future article, | intend to give
additional files such as LOCATE, COLOR,
etc. You might want to include all these ob-
ject codes as well. The best way to link all
these files at the same time is by creating a
library file of all the terminal control com-
mand routines. For this, we would use the
LIB command, which is on the ZDOS Il disk.
It is easy to create a “.LIB” file; the LIB
command prompts you for that. An example
isgivenin Listing 7. The files are linked using
the LINK command as shown in Listing 8.
When you are linking a user created library
with otherfiles, the plus sign must be used to
separate the library file names when library
prompt is displayed. According the the
ZDOS manual, a blank space can also be
used to separate the library file names. This
caused some problems when the user file
name follows the FORTRAN library name
producing the error message “Unresolved
externals’,

Just after | completed this, | came to know
that Clarkson was developing a complete
Graphics package for FORTRAN and Pascal
with capabilities very similar to that of
ZBASIC. It is now available to Clarkson stu-
dents beginning this semester. | have not had
any opportunity to test this package yet. But|
like its capabilities. | am sure that this pack-
age would be an asset to anybody who likes
to have BASIC-like features for FORTRAN
programs. | expect that this graphics package
will be marketed by Clarkson soon. %

About the Author:

M. Manivannan is a graduate student
from India completing his Ph. D. in
Chemical Engineering at Clarkson Col-
lege. He bought his H/Z-100 under the
Clarkson-/Zenith plan. Mr. Manivannan
has already created an alternate charac-
ter set for his mother tongue “Tamil”, a
South Indian language and he is quite
thrilled about it. He used to write short
stories and poetry in Tamil; however he
discontinued after he came to this coun-
try since he didn’t have a Tamil typewrit-
erand didn’thave the patience to prepare
handwritten manuscripts. He hopes to re-
sume his literary career with the Zee and
thanks the smart engineers at Heath-
/Zenith who made this possible. Oh, by
the way, the Zee has been of immense
use in his engineering career as well!

REMark * June - 1984

35


File:TCONTROL
http:SCREEN.OB
http:TERMGRAF.OB

deductible items.

codes or tax flag.

HOME FINANCE SYSTEM

—An extensive Home Finance System that keeps track of
checking, asset accounts (cash, savings, IRAs, CDs), and regular
bill payments. Let your printer write your checks for you on
any business-sized check (design your own check format).
—Checks have user defined codes and a separate flag for tax

—Many reports, including listing all checks, or checks by

—System consists of 100 page users manual with 5 program
disks (5-%4") and a sample data disk.

Hardware: H8/H19 or H-Z89/90 with 64K RAM and two disk drives. Printer
strongly recommended (any Heath®™ Zenith®or other printer).

Software: HDOS 2.0 and Microsoft MBASIC 4.82 for HDOS. —Complete
system: $89F (specify hard-soft sector 5-14", or 8”). Manual alone $21%.

MasterCard/Visa accepted, please include your phone number.

Jay H. Gold, M.D.
Jay Gold Software
Box 2024, Des Moines, IA 50310
(515) 279-9821

N

VERSION 2

tPrices include shipping.

P

—

Powerful Graphics Tools for EPSON Printers!

N W I e e SR e
B B R

DINOSAUR

Susiness Brash Gssaple

* MXGRAPH Turn your EPSON printer into a mighly graphics plofer for business or
personal needs with MXGRAPH! Plot an unlimited number of business graphs, geometric
designs, and artistic sketches with easy one slroke menu driven commands. MXGRAPH
available for the H/Z-89 under CP/M-80 or HDOS operating systems. Requires a SERIAL
EPSON printer equipped wilh bit plol graphics. Specily O.S and hard or soft seclored disk
MXGRAPH is $49 95

* MXPRINT Now LETTER-QUALITY printing is available on the EPSON printer equipped
wilh bit plot graphics! MXPRINT prints your lext and document files at 10 cpi by 6 Ipt using
fetter-qualily character font sets. Each character is formed using a user delinable 12x24
matrix. MXPRINT includes MXFONT for easy. one siroke creation ol your own characler
and graphic font sets. MXPRINT runs under CP/M on the H/2-89 and H/Z-100 machines.
Specily hard or solt sectored disk. MXPRINT is $19.95

A TRUE WORDSTAR ENHANCER

* NOVA The linal WordStar enhancer enables !'ulln use ul ALL your keypad and H/ZB89-19
special function keys, The aut ic one-lime ir P s thirty-six function
Key enhancemenls, nearly twice the number ol enhancemenls others provide! Text entry
and editing speed is Greatly increased| Function key definitions are labeled on 1he 25th line.
Requires Heath/Zenith WordStar version 2.26. Specily hard or soll seclored disk
NOVA is $24 95

PRAINTING THAT ONLY A DIABLO CAN DO

* LETTERIT generates poster quality lettering on any DIABLO printer! Prints proportion-
ally about 3 cpi by 2 Ipi using a 32x24 matrix. LETTERIT includes DBFONT for generating
your own lettering. Runs under CP/M an the H/Z-89 and H/Z- 100 machines. Specily hardar
solt sectored disk. LETTERIT is $19.95

INTERLACED VIDEO GRAPHICS PACKAGE

* ILG GRAPHICS Add Interlaced Graphics to your 2-100 and DOUBLE the graphic
resolution of your display! ILG is a resident assernb!y ianguaga graphlcs packags which
easily interfaces 640x by 480y color interlaced grap t estoany M ftcompilar
(PASCAL, C, FORTRAN, COBOL, ZBASICY), Interpreter (ZBASIC), or assembler (MASM-
B6). Once loaded, ILG remains resident in system memory for easy interface by any high
level language or assembly language module. ILG also includes an inlerlaced screen-dump
utility tor EPSON and Diablo printers. Manual includes examples, 64K video ram chips are
required lor operation in interlaced mode. Runs under Z-DOS on the H/Z-100. ILG
GRAPHICS is ONLY $3995.

Z-DOS COLOR SCREEN EDITOR

* CSE- Color Screen Editor CSE is a-powerlul high-speed. screen-oriented text edilor
CSE makes use of the entire H/Z-100 function key row, the cursor positioning keys, and a
swilchable keypad mode. All functions are perlormed by quick. single-siroke operations.
User settable tabs, lext user delinable colors, protected status line, block get and put
operations, powerful MACRO capabilities, as well as dozens of other editing lunctions are
Included in CSE. Use CSE once and you'll never return to your basic editor again Auns
under Z-DOS on the H/Z-100. CSE Color Screen Edilor is ONLY $49 95

ssssssssns Oodar Form *eeseseses

Quantity Model Format 0.s. Price
MXGRAPH: __ Soft __ Hard, . CP/M _ HDOS .$49.95
MXPRINTT — o Soft.. B8R eminsmmagms $19.95
NOVA: e DO HARHL L s i S $24.05
LETEERIT =—8olt'e— Hardisosaninsasmnsmam. $19.95
ILG Interlaced Graphics Package for Z-DOS ........... $39.95
CSE Color Screen Editor for Z-DOS .. ..........ooiven. $49.95

Microe Innovations

2455 Sylvania Avenue, Toledo, Ohio 43613
Visa/MasterCard 9 to 5 Eastern time 419-471-1245
Ohio residents add 6% sales tax

36

REMark * june * 1984



A New Approach In MBASIC For
Accepting Inputs From The
H/Z-19 and H/Z-89 Keyboard

Richard E. Lucka
InchSoft
64 Fanchers Street
Pickerington, OH 43147

This article describes a new method for inputting characters from
your H/Z-19 and H/Z-89 console using Microsoft MBASIC pro-
grams in the CP/M 2.2 operating system environment. This method
will allow you to maintain one common console input routine
capable of accepting all keys, including function keys, cursor control
keys, and keypad keys in alternate mode.

This article is in response to an article entitled ‘“Those Special
Function Keys’’ by David E. Warnick (REMark Issue 47). The item of
particular interest was in using the keypad keys on an H/Z-89 in
alternate keypad mode. The author mentioned that some of the
characters from the keypad keys in alternate mode are ““lost” to
MBASIC programs, perhaps due to timing between the Terminal
Logic Board and MBASIC. Based on my experiences, | feel that the
problem resides within the MBASIC interpreter and not the
hardware.

To illustrate, consider the following MBASIC program:

10 E$=CHR$(27): GR$=E$+"p":
'Enter reverse video string
20 EGR$=E$+"q": 'Exit reverse video string
30 IN$=INKEY$: IF IN$="" THEN GOTO 30:
'Walt for keyboard input
40 IF IN$ < E$ THEN PRINT IN$;: GOTO 30:
'If not ESC, print character
50 PRINT GRS "e" EGRS;:
'Have ESC, print "e" in reverse video
60 REM Next statement expects a function key identifier
70 IN$=INKEY$: IF IN$="" THEN GOTO 30:
'Go if not a function key
80 PRINT IN$;: GOTO 30: 'Print funotion key identifier

This routine prints out what you type. Whatever the program gets
from the console, or at least from the MBASIC interpreter, it will print
it out to the console for you to see, including the characters repre-
senting function keys.

As many of you know, each function key on the top row of your
keyboard sends two characters: an ESCape key and a function key
identifier, which is an upper-case letter. For example, the f1 key
sends an ESCape character followed by the letter *S”. The above
program will print a lower-case ‘‘e” in reverse video and the letter
“sh,

Enter the above program into your computer and run it. Type any
key. You should see the character(s) of the key you pressed. Now,
press a function key repeatedly. You will notice that sometimes the
ESCape character is printed and sometimes it is not. For whatever
reason (most likely the MBASIC interpreter), your MBASIC program
will not receive all characters coming from your terminal using this
programming method.

However, if you replace each INKEY$ statement with an INPUT$(1)
statement, then all seems well. But, suppose you want to use the
keypad in alternate mode? Enter and run the following program, and
observe what you get:

10 E$=CHR$(27): GRS$=E$+"p":

'Enter reverse video string
20 EGR$=E$+"q": 'Exit reverse video string
30 PRINT E$ "x7";: 'Enter keypad in alternate mode
40 IN$=INPUT$(1): 'Wait for keyboard input
50 IF IN$ < E$ THEN PRINT IN$;: GOTO 40:

'If not ESC, print character
60 PRINT GR$ "e" EGRS$;:

'Have ESC, print "e" in reverse video
70 REM Next statement expects a function key identifier
80 IN$=INPUT$(1): PRINT IN§;:

IF IN§ < "?" THEN GOTO 40: 'Print fnotn key id
90 IN$=INPUT$(1): PRINT IN$;: GOTO 40

When you run this program, line 30 causes your keypad to be set in
alternate keypad mode. Therefore, each key in the keypad will send
three characters: an ESCape character, a question mark (/?"’), and an
identifier character. With this program, you will find that the ““2" is
missing nearly all the time. For example, if you press the ENTER key,
you should see “‘€” in reverse video, a question mark, and the letter
"M”. Instead, you will see the ““e”” in reverse video and the letter
“M”, but not the question mark!

My solution to this dilemma is a small assembly language sub-
program which “‘hides” itself behind the CP/M operating system
nucleus and runs concurrently with most applications programs,
including MBASIC. We will call this program CONSUSR. It is de-
signed to capture all incoming characters and store them in its own
type-ahead buffer, which can then be retrieved by MBASIC programs
or any other program.

CONSUSR takes advantage of a hardware feature in your H/Z-89
such that each time a character is sent from the Terminal Logic
Board, itinterrupts the CPU and causes it to follow a different path (in
this case, it goes to BIOS where it handles console inputs). At this
point, CONSUSR captures the incoming character and storesitin it's
own buffer. It will even capture all three characters sent by a keypad
key in alternate mode.

Your MBASIC programs can call CONSUSR to return an input
character in the same order that it receives from the console. No
characters will be lost, and you can maintain one common console
input routine to handle all your console inputs, including the func-
tion keys, etc.

Since CONSUSR “hides” itself behind CP/M, you will need to
create a separate systems disk using MOVCPM and SYSGEN to

REMark ¢ June ¢ 1984

37



create a CP/M configured to run on 1K less memory than the total
available memory in your computer. The upper 1K of memory is the
place where CONSUSR needs to operate. For example, if you have
64K in your machine, you will need to run MOVCPM to configure
your CP/M systems disk to run on 63K so that CONSUSR will run on
the upper 1K memory.

How CONSUSR Works

CONSUSR, as shown in Listing 1, relocates itself behind the CP/M
nucleus code and intercepts and stores each incoming console
character. It releases each character every time a program calls it, or
it replies with a zero byte (CHR$(0)) if there are no outstanding input
characters.

CONSUSR is written in Z80 assembly language, using the extended
Intel 8080 mnemonics. Much of the Z80 code was chosen to make
the program relocatable and not dependent upon a particular area of
memory. The source code in Listing 1 can be assembled by the
assembler supplied in your CP/M distribution disk. Note that the
Z80 mnemonics are commented (since the CP/M assembler cannot
handle Z80 instructions), but are defined by trailing DB statements.
Also note that CONSUSR uses the Z80 prime registers. Generally,
this should not be a problem if you are using commercial software.
But if you write Z80 programs, using these registers, then avoid using
these programs when CONSUSR is running.

Before the resident part of the program is relocated behind the CP/M
nucleus, CONSUSR allocates and initializes three separate memory
cells in low memory that does not appear to be in use by CP/M or
any other program that | know of.

The first cell is in location 33H (H stands for hexadecimal), which
contains a 3-byte JMP instruction to the CONSUSR program itself,
This is the address which your programs use to call CONSUSR.

The second cell is located in locations 36H and 37H and contains
the original entry address into BIOS that handles console inputs at
interrupt time. CONSUSR stores this address in the second cell and
also within itself so that after it has processed an input character, it
jumps to BIOS to let it perform whatever console handling it has to
do. The housekeeping code of CONSUSR checks the address value
in the second cell to see if CONSUSR was loaded at least once since
the last cold boot. This is done to avoid “re-connecting’” the console
interrupt vector the second time around which would cause your
computer to crash if you type just any key.

The third memory cell is located in 3BH, and is the pass-off byte. This
is the place where CONSUSR puts a console character from which
your MBASIC program can retrieve with the PEEK command. If
CONSUSR has no outstanding console character, then it plugs a null
character (CHR$(0)) in this pass-off byte.

After the housekeeping code of CONSUSR has initialized these
memory cells, it performs the following tasks:

1. Moves the resident code behind the CP/M nucleus code. This is
assuming that you have already MOVCPM'd and SYSGEN'd the
CP/M operating system.

2. Connects the console interrupt vector. Originally, the level-3
console interrupt jumps to BIOS to handle its own console inputs,
but this vector is connected to CONSUSR, and CONSUSR connects
to BIOS after it has read in the character and stored it in a separate
type-ahead buffer.

3. Patches BIOS (in memory) to remove a check for the console
interrupt identification register. This is necessary because since
CONSUSR also reads data from the console port, it “satisfies” the

8250 UART interrupt identification register in your H-88-3 console
serial port (or the H8-4 board in your H8 computer) which con-
sequently would cause BIOS to ignore the console input character.
Without this patch, you would not be able to run other programs.
This patch will render the H8 computer using the H8-5 serial board
totally useless because the patch causes BIOS to ignore input
routines specifically for the H8-5 serial board.

When all the “*housekeeping’” is done, control returns back to the
CP/M operating system. The resident CONSUSR code is now
operating. Each time you press a key, CONSUSR will read the
character from the console input data port and store it in its separate
256-byte type-ahead buffer. This type-ahead buffer is filled in a
rotating manner, that is, if the buffer gets filled, CONSUSR starts at
the beginning of the buffer. After storing the character, CONSUSR
jumps to BIOS to let it handle its own console handling. This
technique allows you to run other programs uninterrupted.

CONSUSR stands ready to accept calls from any program, including
MBASIC programs. Each time you call CONSUSR via 33H, CON-
SUSR replies with a character in the pass-off byte at location 3BH, or
it will reply with a null character if there is no outstanding character
from the console. However, before you begin to use CONSUSR,
POKE a CTRL-R (decimal 18) in the pass-off byte and call CONSUSR;
the CTRL-R is a command for CONSUSR to clear its type- ahead
buffer, or you will get all the type-ins (up to 256 characters) that you
made prior to the first call to CONSUSR.

As an added feature, CONSUSR responds to the BREAK key and
treats it as if you entered a CTRL-C character. In other words, you can
press the BREAK key to “BREAK" an MBASIC program, or any other
program that responds to the CTRL-C character. CONSUSR takes
advantage of a special hardware feature found in the 8250 UART in
your serial board that will allow it to substitute a character with
another. Because of the nature of the BREAK key, the CTRL-C sub-
stitution feature takes place about 3/4 seconds after you press the
BREAK key.

Using CONSUSR

Listing 2 shows an MBASIC program called RUNUSR, which dem-
onstrates the power and effectiveness of CONSUSR. RUNUSR types
out the character of each regular key that you typed, or the name of
each function key you pressed. When runningthis program, you will
find that you will not lose any character at all, even if you hold down
a function key and the REPEAT key simultaneously. All keys will be
identified except the CTRL-@ character (it produces a null character).

The following is a brief description of the most important parts of
RUNUSR (the parts that you will want to include in your future
programs):

Line 20

Defines variables UZR and BYTE. UZR points to memory location
33H where a JMP instruction has been installed (by CONSUSR) to
“jump’” to CONSUSR, whose location depends on the amount of
memory you have in your computer. BYTE is the memory location of
the “pass-off’’ byte.

Line 50

Plug a CTRL-R in the pass-off byte and CALL UZR to clear CON-
SUSR’s type-ahead buffer. If you bypass this line, you will see all the
type-ins you made before you got to this point.

Line 60
Use a GOSUB to call the common console input routine.

38

REMark * June = 1984



Lines 70-90

Upon return from the preceding GOSUB, the variable IN contains a
value that represents the key that you pressed, except the CTRL-@
key. See Table-1 for the definition of each value for IN. The “ON
expr GOTO’ statement is ideal for selecting the appropriate routine
for each input character.

Lines 1004100
All lines within this range display the name of the key you pressed.

All control characters will be displayed by the corresponding CTRL-
character designation in reverse video.

Line 50020
Assign a value of 1 for the variable IN, the default value if you press a
regular key (alpha, numeric, or special character).

Line 50030

CALL CONSUSR to see if there is a pending character from the
console. If there is no pending character, then CONSUSR returns
with a null character (CHR$(0)) in the pass-off byte.

Line 50040
Check to see if the input character is an ESCape character or not. If
not, the variable IN is already 1", therefore RETURN.

Line 50050

Since the first character was an ESCape character, CALL CONSUSR
again to see if there is another character.

Line 50055

If there is no other character following the ESCape key, then assume
that the user pressed the ESC key only.

Line 50060
Check if the second characterisa ‘2. If so, GOTO 50120 to look for

a third character representing a keypad key in alternate keypad
mode.

Lines 50065-50110

The lines within this range check the various characters that repre-
sent the function keys and the cursor control keys. For each of these
keys, a value is assigned for the variable IN.

Lines 50120-50160
These lines process the third character that represents a key in the
keypad in alternate keypad mode. For each key, a value is assigned
for the variable IN.

The variable IN is used to indicate the key that was typed, whether it
is a regular key, a function key, or a keypad key in alternate mode.
The chart in Table 1 shows the different values and the associated
key each value represents. For example, upon return from a GOSUB
50000 and IN=19, that means the user (you) typed an f4 function
key. If IN=1, then the user typed in a letter or a number. Lines 70
through 90 in RUNUSR show the easiest way to GOTO the appro-
priate routines for each special key.

One precautionary note: If you are running RUNUSR on a 4MHz
machine, when you press a function key, your MBASIC program
should pick up the ESC key, then drop down to line 50050 to pick up
the identifier character(s). However, without a small delay loop,
RUNUSR may even miss the identifier from line 50050 because the
CPU isfastenough to call CONSUSR before CONSUSR even gets the
identifier, therefore RUNUSR assumes that you pressed the ESC key
only, then after CONSUSR finally got the identifier and you call it
from line 50030, you will assume that the user suddenly typed a
letter, and will show this on the screen. To prevent this from happen-
ing, insert a small delay routine, such as:

50045 FOR I=1 TO 5: NEXT: 'Delay awhile...

This technique will give the fast computer a chance to capture all the
key-ins.

Installation

CONSUSR has been verified to operate in the CP/M 2.2.03 operat-
ing system environment using the UNMODIFIED BIOS supplied in
the CP/M distribution diskettes from Heath. CONSUSR does modify
BIOS, and itisvery likely that CONSUSR will not run (as presented in
this article) if you are using a BIOS from another source.

Create a separate system disk, run MOVCPM and SYSGEN. Re-
member to specify 1K less memory than is available in your compu-
ter when running MOVCPM. For example, if you have 48K memory,
type MOVCPM 47 * (see your CP/M reference manual for more
details).

Enter the CONSUSR program from Listing 1. Fill in the correct value
for the variable MEMSIZE. If you have 48K of memory, use the value
48.

Run ASM and LOAD to assemble the program. You may wish to
configure the new system disk to run CONSUSR.COM automatically
during cold boot.

Now, if you haven't already done so, run CONSUSR. it should load
and return the CP/M command mode. CONSUSR is now in memory
and running. As you type, it is storing your key-ins, but will not
interfere with what you are doing.

Enter the RUNUSR program from Listing 2. Run this program to see
what CONSUSR can do. In the future, you may use portions of
RUNUSR as a foundation for a common console routine which can
be merged in with future MBASIC programs.

Conclusion

[ hope this article will prove useful to many in the HUG readership.
With the technique described in this article, you can write effective
programs that take advantage of all the keys and hardware features in
your H8 or H/Z-89 computer using the MBASIC interpreter.

If you do not wish to take the trouble of entering CONSUSR and all
the associated MBASIC routines, | will be glad to provide the
CONSUSR source code, the associated MBASIC routines, including
RUNUSR and the CONSUSR.COM file, if you send me a formatted 5
1/4" hard sectored diskette and $5.00. There will be three CONS-
USR.COM files, one for 48K, the second for 56K, and the third for
64K. The $5.00 will be used to cover the cost of copying, postage,
handling, and materials. Send your diskette to:

InchSoft

Attn: Richard E. Lucka
64 Fanchers Street
Pickerington, OH 43147

Table 1

Assignmients for variable IN% for each H/Z-19 and H/Z-89 key as
used in RUNUSR:

INZ Key Representation

>

Single Key —~ alphabetic, numeric,
special characters, and CTRL

Up arrow

Down arrow

Right arrow

Left arrow

HOME

ERASE

IC on (turn on insert character mode)

IL (insert line)

O OWI0OG AN

REMark « June « 1984

39


http:CONSUSR.COM
http:CONSUSR.COM




ANA A

H JZR 8+7
: INI ;Input data from console
port
JNZR §+3 ;Cause wrap-around if at
end of console buffer
DB 50Q,5,355Q,242Q,40Q,1
DCR H
H EXX ;Restore registers and
: return to CP/M
; EXAF
DB 331Q,10Q

JMPSCPM JMP n]

a

; USR routine called from a MBASIC program to fetch a

: data from buffer.

USR DI
EXX
DB 331Q
LDA 03BH
CPI 012H
JER USR1
DB 050Q, (USR1-8)-1
LDAX D
STA 03BH
ORA A

i JZR §+5
DB 50Q,3
XRA A
STAX D
INR E

H EXX
DB 331Q
EI
RET

USR1 XRA A
MVI L,OFFH
MoV M,A
MVI E.OFEH
LXI B, 254

H LDDR
DB 355Q,270Q
STAX D
MVI C,350Q
DCR L

i EXX
DB 331Q
STA D3BH
EI
RET

; Special BREAK key handler.

USRECTR PUSH H

PUSH D

LHLD 34H

LXI D,DS$CTRL-USR
DAD D

IF CTRLSS

MOV AM

XRI 3

MOV M,A

ENDIF

IN 351Q

;Disable interrupts,
switch to prime regs

;See if user requesting
buffer clear

;Buffer clear if user
sent tR

;Fetch data and store in
transfer area

;If null charaocter, do
not bump to next addr

sReplace with null and
incr pointer

,Scheme supports
wrap-around
:Restore regs and return

;Enable interrupts
;Return to calling
program

;Clear console buffer to
null and
reset prime registers

;Return with null in
pass-off byte

;Save HL'
;Save DE'
;Find out where DSCTRL is

;HL = address of DSCTRL

;Toggle CTRL-S/CTRL-Q,
if implemented

:Get current console
interrupt status

D§CTRL

D$CTRL

USRSE

PUSH
XRA

our
IN

ORI
ouTt

EI

XCHG

RRC
JNCR
DB
IN

XRI
our

MOV
CMP
JNER
DB
INC

DB

POP
out
LHLD

DCX
DCX
DCX
DCX
DCX

POP

XTHL
RET

IF
DB
ENDIF

IF
DB
ENDIF

EQU

PSW

351Q
354Q

20Q
354Q
350Q

H, TICCNT
AM

110

M

$-1
40Q,253
350Q

D

A
355Q,171Q

356Q
§-3
60Q,251

354Q

20Q
354Q

AM
110

M
$-1
40Q,253
A

355Q.170Q

PSW
351Q

34H

b = = - -

o

CTRLS$S
LT

NOT CTRLSS
3

;Save it
;Disable console
interrupts

;Set console UART in

loopback mode

;Dummy read

;Allow CPU interrupts
for TICCNT

;DE = CTRL-char.,
HL = TICCNT

;Small delay

;Dummy read

;Output the

CTRL-character

;Wait ti11l data "looped"
around to input port

;Reset UART loopback
mode

;Small delay again

;Dummy read to satisfy
pending data ready

; 4interrupts

;Disable CPU interrupts
for now

;Restore original console
interrupt status

;Find out where
JMPSCPM-2 is

+HL = address of
JMPSCPN-2

;Restore DE' and HL',
g0 to JMPSCPM

: CTRL-Q

1 CTRL-C

REMark = June * 1984

41



Listing 2

10 REM RUNUSR — CONSUSR Exerciser Program

20 UZR = &H33: BYTE = &H3B: 'CONSUSR entry address and
transfer byte

30 E$ = CHR$(27): RV$ = E$+"p": ERV$ = E$+"q"

40 PRINT E$ "=": 'Set keypad in alternate mode

50 POKE BYTE, 18: CALL UZR: 'Flush console buffer

60 GOSUB 50000: 'Go get a character from console

70 ON IN GOTO 100,200,300,400,500,600,700,1200,
800,900, 1000, 1100, 1300, 1400

80 ON IN-14 GOTO 1500,1600,1700,1800,1900,2000,2100,
2200,2300, 2400, 2500, 2600

90 ON IN-26 GOTOQ 2700,2800,2900,3000,3100, 3200

100 IF IN$ < " " THEN PRINT RV$ CHR®(ASC(IN$)+64) ERVS:
GOTO 60

110 PRINT IN$: GOTO 60

200 PRINT "Up arrow':

300 PRINT "Down arrow":

400 PRINT "Right arrow": GOTO 60

500 PRINT "Left arrow": GOTO 60

600 PRINT "HOME": GOTO 60

700 PRINT "ERASE'": GOTO 60

800 PRINT "Insert Line key": GOTO 60

900 PRINT "Delete Line key": GOTO 60

1000 PRINT "Delete Character key": GOTO 60

GOTO 60
GOTO 60

1100 PRINT "Exit Insert Character mode'": PRINT E$ INS;:
GOTO 60
1200 PRINT "Enter Insert Character mode": PRINT E$ INS;:
GOTO 60
1300 ID$ = "Blue": GOTO 4000
1400 ID$ = "Red": GOTO 4000
1500 ID$ = "Gray": GOTO 4000
1600 ID$ = "fi1": GOTO 4000
1700 ID$ = "f2": GOTO 4000
1800 ID$ = "f3": GOTO 4000
1900 ID$ = "f4": GOTO 4000
2000 ID$ = "f5": GOTO 4000
2100 ID$ = "ENTER": GOTO 4100
2200 ID$ = ".": GOTO 4100
2300 ID$ = "O": GOTO 4100
2400 ID$ = "1": GOTO 4100
2500 ID§ = "2": GOTO 4100
2600 ID$ = "3": GOTO 4100
2700 ID$ = "4": GOTO 4100
2800 ID$ = "5": GOTO 4100
2900 ID$ = "6": GOTO 4100
3000 ID$ = "7": GOTO 4100
3100 ID$ = "B8": GOTO 4100

3200 ID$ = "9": GOTO 4100
4000 PRINT ID$ " function key": GOTO 60
4100 PRINT "Keypad " ID$ " key in alternate mode":
GOTO 60
50000 REM Common console input routine
50010 REM Exit: IN$ = last character, IN = index value
50020 IN=1: 'Default regular character index
50030 CALL UZR: IN$ = CHR$(PEEK(BYTE)):
IF IN$ = CHR$(0) THEN GOTO 50030
50040 IF IN§$ <> CHR$(27) THEN RETURN:
'Regular character
50050 CALL UZR: IN$ = CHR$(PEEK(BYTE))
50055 IF IN$ = CHR$(0) THEN IN$ = CHR$(27):
RETURN: 'ESC only
50060 IF IN$ = "?" THEN GOTO 50120:
'? = alternate keypad character

50065 IF IN$ = "@" THEN IN = 8: RETURN:
'Enter IC mode character
50070 IF IN§ < "H" THEN IN = ASC(IN$)-63: RETURN:

'Arrow key indexes
50080 IF IN$ = "H" THEN IN = 6: RETURN:
50090 IF IN$ = "J" THEN IN = 7: RETURN:
50110 IN = ASC(IN$)-67: RETURN: 'All the rest
50120 CALL UZR: IN$ = CHR$ (PEEK(BYTE)):

'Alt. keypad character
50130 IF IN§ = "M" THEN IN = 21: RETURN: 'ENTER
50140 IF IN$ = "n" THEN IN = 22: RETURN: '.
50150 IN = ASC(IN$)-89: RETURN: 'All the rest

'HOME
'ERASE

IBM-PC/ZENITH Z-100 users.

Expand your computer universe with—

micro/VERSAL ™

A utility program to READ/WRITE over 20 different 5%
(CPM, CPM/86, MS-DOS & USER DEFINABLE) disk
formats. Now you can easily transfer text, data, or pro-
grams between many different micro computers by
simply loading micro/VERSAL™ and the disk you want
to READ/WRITE from or to. micro/VERSAL™ also in-
cludes comprehensive utilities to DUMP any 5% disk
by track, RDSECT to read disk sectors and FAPP, a
program to append files together to produce a large
file. For disk formats not directly supported, micro/
VERSAL™ provides customization routines that allow
users to write their own directory routines.

microversaL”  $79.99
plus $4.00 shipping & handling
Also COED™ full screen editor................. $34.97
Includes: Stack arithmatic, MACRO commands, multiple

files, definable function keys and much more.

CREDIT CARD ORDERS:
MAIL ORDERS:

Master Charge / VISA
Checks or money orders.
N.J. resident add 6% sales tax.

ADVANCED SOFTWARE TECHNOLOGIES

417 Broad Street
Bloomfield, N.J. 07003

(201) 783-7298

1

( Z —DRAW « development tool for
H/Z-100 Users

DEVELOP interesting graphics screens quickly and
easily that you can display from your BASIC pgms.

* USEFUL applications are:

+ Games

* Instructional Software

* Process Description Software
* Online Documentation

®* PROGRAMS included are:
* Z-DRAW A graphics editor
+  Z-LEARN An online tutorial
*  Z- MERGE ZBASIC source for a

file display routine

Visit our booth at the HUG Conference

Send Check or M.O. for $49.95 to:
REDWOOD DEVELOPMENT

7 Redwood Dr., BUTTE, MT 59701

(406) 494—5610 Business Hrs. 5-9 pm MST
Mastercard & Visa accepted

\ Z-100, ZBASIC are trademarks of Zenith Data Systems, Inc. )

42

REMark ¢ June = 1984



WITH THE PASSWORD™ MODEM AND
TELPAC™ BEN FRANKLIN COULD HAVE
PUBLISHED THE FRIDAY EVENING POST.

'1;e Password™ modem and the cost will be half or less—the
Telpac™ software deliver text fast, proofreading zero!

far, cheap, and letter-perfect. Fast? Password is USR’s virtually

Ten times faster than an expert typ-  automatic modem: 300/1200 baud,
ist (and four times faster than most  auto dial/answer, auto mode/speed
other modems). Far? Crosstown or  select, two-year warranty. $449.*
crosscountry. Letter perfect? Multi-  Telpac, the USR friendly telecom-
ple accuracy checks of your textare  munications software package,
just one editorial benefit. Cheap? $79. Write or call for complete
Thousands of words by phone " descriptions—both Telpac
lines, for less than express mail. @ and Password do far more
And if the text is to be typeset, than this!

U.S. ROBOTICS INC.
1123 WEST WASHINGTON « CHICAGO, ILLINOIS 60607
(312) 733-0497

(=18

"4or Password complete

ter, phone cable,

b
= L
&JM and USR logo are
. )

S @FLL'S. Robotics Ine.

.



How To Build An RS232

Circuit For HERO |

Overview

This article presents information necessary to construct an RS232
circuit for HERO. For brevity, no attempt was made to give a com-
plete step by step assembly. The modifications to HERO are minor
and easily reversed. The circuit is constructed on the experimental
circuit board. Selected cables within HERO have been used to bring
the additional lines needed up to the experimental circuit board.

Refer to Heathkit's Microprocessor Interfacing Course for additional
information on RS232 circuits.

The basic steps in construction of the RS232 circuit are as follows.
» Remove thehead panel and rear panel to gain access to the cables.
* Make the necessary changes to the cable.

+ Construct the circuit on the experimental circuit board.

» Build the RS232 cable thatis appropriate for your microcomputer.
+ Test the circuit.

Parts List

Part numbers are given when available. The list is complete except

/. P. Weichert, Jr.
5347 Edith
Houston, TX 77096

6850 ACIA

GND —I1 CTS 24!-——-— GND

1489 PIN 3 ——I2 DCD 23—~ GND
AY-5-8116 PIN 3 ——-13 221—— DO
6850 PIN 3 —-14 21— D1
GND-15 20|— D2
1488 PIN 2 —16 19| — D3
N/C-1T7 181-— D4
A6—-18 (SO 171-=— D5
6000H CHIP SELECT-|9 (CS2 16|-— D6
A7——110 CS1i 151— D7

A0—I11 RS 14!— 02(E)

+5V—112 131-— PIN 3 — 74LS00

Note: The two address select lines are normally high and go low
when an address falls within the indicated range (4000-5FFF or
6000-7FFF).

74LS00
for the tools needed and such items as electrical tape and solder.
R/W —I1  14]1— +5V
Qty. Description Part Number TO PIN 1 74LS00 —I2 131
6850 PIN 13 —1!3 12} NOTE: This circuit
1 6850 ACIA Heath 443-1019 14 111 is needed to restore
1 1488 Heath 443-794 15 10! the read/write(R/W)
1 1489 Heath 443-795 16 9l signal since it is
1 74100 Heath 443-728 GKD-17 8! inverted.
1 AY-5-8166 Dual Baud T
Rate Generator Radio Shack 276-1795
1 5.068 MHz Crystal
1 10 Pin Connector Heath 432-958 1489
1 27K OHM (1/4 watt) Heath 6-273-12
1 4.7K Ohm (]/4 watt) RS232 IN—I1 14! — +5V
2 2C battery Connector Heath 432-798 1488 Pmséggz’;;( oK *:g 13:
2 9 Volt batteries N2 Tl ﬁl
nFT Three lead cable 15 10!
1 RS232 Connector for 16 9l
your Microcomputer GND-I7 8l
3FT Wire for Experimental T
Board
Circuit Diagrams 1488
The diagrams do not indicate the normally low lines such as CS2 on -12V ——11  14l— + 12V
the 6850. Refer to appropriate data sheets for the full specification of 6850 PIN 6 —-l2 13|
agiven chip. The diagrams show +12v and -12v as the ideal voltages R OWF _—{3 ﬁ:
to be used. Although the two 9 volt batteries will be used and are 15 101
satisfactory. 6 9!
GND-17 8|
-9v to 1488 PIN 1 —— 9V BAT +++ TO GND —
+9v to 1488 PIN 14 ++ 9V BAT —— TO GND
44

REMark ¢« June « 1984



AY-5-8166
___5.068____
| MHZ CRYSTALI NOTE: As shown the
| | gircuit provides a 1200
—I1 181 —"' baud clock signal for
+5V-12 171-N/C the 6B50. Refer to the
PIN 3 6850 13 161-GND data sheet for other
N/C-14  15!-GND  baud rates.
N/C-15  14!-GND
N/C-16  13!-GND
GND-17  121-GND
+5V-4.TK OHM— |18  111-GND
N/C-19  101-N/C

Experimental Board Layout

The asterisks represent the connector blocks. The R/W and INT are
in the same position on the new block as they were on the old block.
The other connector blocks that were changed are marked with their
new values. The pin 1 locations were chosen to minimize the
number of lines that had to be overlapped.

6850 1489 1488 AY-5-8116 74LS00

1 - S U O N A B (- |
| 241 1 11111 (S S

SEE0 SE8E SEEE BEND SEER HEEE SEREE SEEE

D DA A 46 ERI

7 oo 7 0o WN
0o T
oo

Connector Charts

Before constructing any of the connectors, remove the fuses from
inside HERQ. Also, to reduce any chance of a short circuit do not
wear any jewelry (watches, rings, ets.). Unplug P316 and remove the
leads from pins 150(BRN), 152(WHT), 153(VIOL), and
154(WHT/BRN). Leads can easily be removed with any pointed
object small enough to be inserted into the back of the connector and
simultaneously depress the raised catch and slip it back into the
connector. After four leads are removed from P316, reinsert P316.
Please note that the pin connectors and colors of the lead were taken
from the block interconnect diagram. The assembly manual gives the
pins as 149(BRN), 152(WHT), 154(VIOL), and 155(WHT/BRN).
After the leads are disconnected, they should be verified as being
connected to the same colors on P1304 through the use of avoltohm
meter.

Next, unplug P308. The BRN and WHT leads just removed from
P316 will be used. Insert the BRN lead into slot 110 and the WHT
lead into slot 109. At the lower edge on the far end of the CPU board
when viewed from the access panel, is a ten pin plug. Insert the old
P308, the new P406, in that position. The label on the plug should be
visible and slot 109 should be on top.

Originally, P1301 was connected to P306. P1301 will be left un-
changed. Unplug the original P306 and remove the lead from slot
130. The ‘NEW P306" will be made from lead in the equivalent slot of
a ten pin connector (see parts list). Plug the ‘NEW P306’ into the old
P306 position. Insert the WHT/BRN lead from P316 into slot 130.
Slot 129 will not have a connection. There are two ten pin brackets at
the leading edge of the CPU board as viewed from the access door,
plug the old P306 into the uppermost ten pin bracket. The label
should be visible and slot 129 should be on top. This completes the
new P407. (Note: Had the WHT/BRN lead on my HERO been

connected to slot 24 of P403 to obtain the R/W signal, there would
have been no need to move the connection.)

Three of the four leads from P316 have now been used. The remain-
ing lead should be the violet(VIOL) lead. Remove the connector from
the violet lead and strip about 5/16 inch of insulation. Carefully
remove about 1/4 inch insulation from the grey lead in slot 25 of
P403, twist the bare end of the violet lead around the bare spoton the
grey lead, and solder. Wrap the two wires with electrical tape. This
will bring the clock signal E up to the experimental board.

Of the four plugs on the experimental circuit board, only P1304 will
be modified. Pins 7 through 10 remain the same. Move the WHT
lead to pin 1, the BRN lead to pin 2, the VIOL lead to pin 5, and the
WHT/BRN lead to pin 6 if not already in this position. Pins 3 and 4
should have no connection.

The following charts illustrate the new/old experimental circuit
board connector block/cable connections to the old/new connec-
tions,

ORIGINAL ORIGINAL
CONNECTOR PLUG ORG. OLD P306
NEW BLOCK P1301 TO P306 NEW P407
D7 DIo 1 138 — D7
D6 DI 2 137 — D6
D§ DIz 3 136 — D5
D4 DI3Z 4 135 — D4
5-N/C
6-N/C
D3 DI4 7 134 — D3
D2 DIS B 133 — D2
D1 DI6 9 132 -—— D1
Do DIT 10 131 — DO
130- R/W WHT/BRN
TO P1304 PIN 6
129~ N/C
NEW
P306
130-SLEEP-130
129- N/C -129
ORIGINAL ORIGINAL
CONNECTOR PLUG ORG. OLD P308
NEW BLOCK P1302 TO P308 NEW P406
AQD DOO 1 118 — AOD
Al D01 2 117 — AL
A2 D02 3 116 —— A2
A3 D03 4 115 — A3
A4 D04 5 114 — A4
A5 DOS ] 113 —= AS
A6 D06 7 112 — A6
AT  DOT B 111 — AT
] N/C-110 —— Address select 6000
BRN P1304 PIN 2
10 N/C-109 —— Address select 4000

WHT P1304 PIN

Note: Pin 10 of P1302 has no connection. The abort line is a separate
lead that connects to P1302.

ORIGINAL ORIGINAL
CONNECTOR PLUG
BLOCK F1303
GND i
GND 2
+5V 3
+B5V 4
+12V 5
+12V 6
_ 7

REMark * june » 1984

45



— 9
— 10
ORIGINAL ORIGINAL  NEW
CONNECTOR PLUG PLUG
NEW BLOCK P1304 P1304
CS 4000-5FFF —- 1 — WHT PIN 11D P406
CS 6000-TFFF —- 2 —— BRN PIN 109 P406
GND 3 N/C
N/C — 4 N/C
02(E) —- 5 N/C- VIOL TO P403
PIN 25(GREY LEAD)
R/W R/W 6 R/W— WHT/BRN PIN 130 P407
INT INT 7 INT- INT
GND 8 N/C
GND 9 N/C
SLEEP 10 —— SAME

RS232 Cable

For my computer, | used an eight foot 3 conductor cable and a male
RS232C connector. The cable is wired as a null modem cable. You
may have to reverse lines 2 and 3, depending on your microcompu-
ter. The leads that plug into the board were tinned with solder to
make plugging and unplugging the leads easier.

EXPER.

BOARD

1489 PIN 1
1488 PIN 3
GROUND

RS232

CONNECTOR

PIN
2
3
T

Sample Software

As wired, the address of the 6850 ACIA is 60C0 hexadecimal.

The following program transmits characters A through Z from HERO
to your microcomputer.

RECEIVE DATA FROM YOUR MICROCOMPUTER AND STORE IN HERO

ORG 0200H
0200 86 03 LDA A #03H ; VALUE TO RESET
6850
B7 60 CO STA A 60COH : RESET 6850
86 11 LDA A #11H ; CLOCK DIVIDE BY
; 16, B DATA BITS
B7 60 CO STA A 60COH ; PLUS 2 STOP BITS

CE 03 00 LDX O0300H ; LOAD ADDRESS TO
. START SAVING
; INCOMING DATA
Bé €0 CO ASTAT: LDA A 60COH : GET STATUS BYTE

46 ROR A : SHIFT RECEIVED
+  BIT INTO CARRY
24 FA BCC  ASTAT ; IF CARRY BIT
:  CLEAR CONTINUE
; CHECKING
B6 60 C1 LDA A 60CiH ; LOAD INCOMING
i CHARACTER
A7 0O STA A 0,X ; STORE CHARACTER
ol INX ; INCREMENT INDEX
:  REGISTER
20 F2 BRA  ASTAT ; WAIT ON NEXT
CHARACTER
END

On my microcomputer | wrote a program that would read the
assembly listing, extract the hexadecimal values of the instructions,
convert the values to binary, and send the values out the communi-
cation line.

VERSION 2

ORG 0100H y
_— LA & $OSH § LOADVALUET0 The word processor and full screen editor
; RESET 6850 for the Z100 and ZDOS.
B7 60 CO STA A 60COH ; DUE SOFTWARE
. RESET NEW FEATURES:
86 11 LDA A #11H : DIVIDE CLOCK BY ; ;
. 46, B DATA BITS * Files of arbitrary length
B7 60 CO STA A 60COH ; PLUS TWO STOP * Extensive configuration facility
; BITS
C6 58 LDA B #5BH . CHARACTER Z+1 * Muitiple fonts loaded from ALTCHR files
86 40 RSET: LDA A #40H ; BLANK CHARACTER
B7 00 FF STA A OOFFH : SAVE e Support for ZDOS Version 2 subdirectories
B6 00 FF  SEND: LDA A DOFFH ; LOAD CHARACTER
4c INC A ; INCREMENT Plus all of the features of Version 1 including:
:’; g‘; FF gg; - ; ::::;F*?FTO Bz , superscripts, subscripts, underlining, boldface,
: GT ZERO i ; S T :
56 0O LDA A DOFFH : ELSE RESTORE CHAR. TO (?entenng,forlmat'lmg.mlcrojustm.catlon.arbnrary
. REGISTER A line length w:tlh horizontal scrolling, word wrap,
B7 60 Ci STA A 60C1H ; AND SEND CHARACTER auto save, split screen, macros, user settable
B6 60 CO  ASTAT: LDA A 60COH ; LOAD STATUS defaults and definable keys, global search and
: REGISTER i
P —_— AT REGHAC N replace with settable zone.
BITS
46 ROR A For additional details,
24 F9 BCC ASTAT ; IF CARRY BIT AR :
. cLE senda SASE_ S & K Technology, Inc.
;  CONT. CHECKING Demo Disk: $3.00
20 E7 BRA SEND : STATUS ELSE GO WatchWord with 4610 Spotted Oak Woods
i SEND NEXT Manual: $100.00 San Antonio, TX 78249
- ;  CHARACTER. 512-492-3384
: ATTN: Steve Robbins
46

REMark * June « 1984



This article deals with the use of Microsoft’'s M80 assembler and
assembly language subroutines with Microsoft’s BASIC Compiler
under CP/M. Assembly language subprograms can improve your
BASIC programs in several ways. Speed of execution can be im-
proved in critical areas, and individual bit manipulations can be
easily done. There are applications for which assembly is still the
best if not the easiest choice. Assembly routines can seem hard to
write, but you don’t need to become an accomplished “hacker” to
use assembled subroutines.

Numerous programming languages are available for use on CP/M
systems. There are several dialects of BASIC, COBOL, FORTRAN,
RATFOR, PASCAL, C, LISP, LOGO, FOURTH, M80, RMAC, ASM,
and others. Each of these has its supporters, some approaching
religious zeal in their devotion. The fact is, any language has
strengths and weaknesses. FORTRAN is well suited for precision
floating point calculations, but doesn’t handle other data types very
well. PASCAL is good for teaching structured programming, but
forces programmers to use its preconceived structure. BASIC is easy
to learn, but is not modular and lends itself to sloppy programming
techniques. C, a good modular systems programming language,
lacks many mathematical functions like exponents or trigonometric
functions, Assembly language is especially good for those applica-
tions requiring high speed (real time) data handling or very compact
code. Some routines, however, can be very hard to write. The pointis
that each of these languages is particularly suited for certain prob-
lems and not to others.

A good mechanic would never go to work with only one screw driver
or one wrench. The true professional will have a box full of different
tools, each one specifically suited to a certain task. He will know
which item to use for each job. Similarly, the professional program-
mer will have an arsenal of programming tools. He will know which
ones to use, and when to use them. Most of us are not using our
Heath computers professionally, but most have more than one pro-
gramming language for our systems. We should not restrict ourselves
to the use of only one language.

Particular advantages exist for the CP/M user who is at |east some-
what familiar with assembly language. Over one hundred disk vol-
umes of free public-domain software are available for virtually the
price of the media. The programs range from games to compilers.
One of the best modem programs available anywhere is MODEM?7,
available free! Many of the free programs include assembly source
code and may require slight changes to work properly on a given
system. Much can be learned just from reading the source code for
these programs.

A knowledge of assembly language can be very useful to the BASIC
programmer. BASIC is easy to learn and can be used for a variety of
applications. Sometimes, interpreted BASIC is too slow for some real
time tasks, and even compiled programs may need speeding up. In
addition, there are certain tasks which are awkward in BASIC.
Checking the status of individual ports requires bit checking which

Gilc
. -
< \\\ Route 2, Bg
S Rosharon, T
-

can be tedious. A particular program which is just a little too slow
can benefit from the right assembly subroutine. For example, the

BASIC source code listed below is a simple terminal emulator pro-
gram.

1 18RS ERERNRNIRRRRERERERRARRETRORERERNEdERERRARRES

2 ' TERM300.BAS - January, 1984 - Allen Gilchrist *

3 I SEENERNENIRENRNERG IR N EREOinNERNRRNISEEssIREOERERERAR
5 DEFINT A-Z

6 ' Setup USART for 300 baud.

10 OUT 219,131

20 OUT 220,3

30 OUT 216,128

40 OUT 217,1

50 OUT 219,3

60 ' Main program loop

100 K$=INKEY$: 'check for keyboard input

105 ' if no input, go to 140

110 IF K$<CHR§(1) THEN 140

115 'get port status word and rotate right to fifth bit
120 S=INP(221)/32

125 'output character if port ready

130 IF INT(S/2)<>S5/2 THEN OUT 216,ASC(K$)

135 'get port status byte

140 I=INP(221)

145 'get and display character if ready

150 IF INT(I/2)<>I/2 THEN PRINT CHR$(INP(216)):
1556 'loop back and do it again

160 GOTO 100

170 END

Lines 10 through 50 set the INS8250 asynchronous communications
element to 300 baud, 8 bit operation as outlined on page 13-4 of the
H-89 operating manual. The comments explain the operation of the
main loop. Console input and output is handled by the INKEY$
function and the PRINT statement. Port status tests and | /O are not so
easy. The status word for port number 216 is obtained in lines 120
and 140. If the least significant bit is a one, there is data at the port
from the modem. If the sixth bitis a one, the port is ready to receive
data for the modem. These conditions are determined in lines 130
and 150. This simple terminal emulator works quite well at 300 baud
when compiled with BASCOM. It will not work at 1200 baud how-
ever. [tis possible to carefully optimize this program to achieve 1200
baud operation, but that is not the purpose of this article. The use of
two short assembly routines to handle the port 1 /O and status checks
solves the problem. Before we can write the subroutines, however,
we must know a little bit about assembly language.

Pat Swayne's series of REMark articles, ““Cetting Started With As-
sembly Language”, is a good place to begin. A more complete
treatment can be found in the “Assembly Language Programming”’
course available from Heath. The course, which can be applied to

REMark = June » 1984

47



both CP/M and HDOS assemblers, starts at a beginners level but
moves rapidly. The example programs won’t all run the firsttime, but
getting them to go can be part of the learning experience. Assembly
source codes obtained with HUG or public domain software can
also be helpful. There are numerous books on 8080 and Z80 pro-
gramming available at most book stores. | have several of these, but
don't think any are as good as the Heath course.

Afirst step in writing subroutines is to learn to use the Microsoft M80
macro assembler. This is not necessarily an easy task. A source file
that assembles and loads with Digital Research’s ASM may not
necessarily do so with M80. The first difference is that most labels in
M80 source files must be followed by colons (:). ASM does not
require colons, but will allow them. It is probably a good idea to get
in the habit of using the colon after each label. Be cautious, however,
labels preceeding the EQU and SET pseudo-opcodes must not have
the colon. The ORG assembler directive also causes problems and is
best left out of the source files for M80. The following source listing is
a very simple assembly language program which clears the H/Z-89
screen.

; CLEAR. ASM A VERY SIMPLE ASSEMBLY PROGRAM

: ALLEN GILCHRIST - JANUARY, 1984

;.Q..QQ....EQUATES..‘.QQIQ.O

ESC EQU 027
BDOS EQU 05
;Q'QQ’!DQI“"AIN PROGRAM.Q!QQ.QQIQ
START ORG 0100H
LXI H,0 N ; LOAD H-L PAIR WITH O
DAD SP ; ADD STACK POINTER TO
; H-L
LXI SP,STACK ; SETUP LOCAL STACK
PUSH H ; CP/M SP ON LOCAL STACK
MVI A,ESC ; PUT ESCAPE IN REGISTER
;A
CALL PCHAR ; OUTPUT IT TO THE
;  SCREEN
MVI A,'E' ; PUT AN 'E' IN REGISTER
;A
CALL PCHAR ; OUTPUT IT TO THE
; SCREEN
POP H ; GET CP/M SP FROM STACK
SPHL ; SWAP SP WITH H-L
RET ; AND RETURN TO CP/M
;...QQGQ.!OSUBROUTINEO.QQQ..IQQ
PCHAR  PUSH B SAVE REGISTERS ON STACK
PUSH D
PUSH H
MVI c.2 ; SET REGISTERS FOR CP/M
MOV E,A ; CONSOLE OUTPUT,
CALL BDOS ; AND CALL BDOS
POP H ; RESTORE REGISTERS
POP D
POP B
RET ; RETURN TO MAIN PROGRAM
;!&0.I§QIQIDEFINE sToRAGEQ&GIl‘QI*&
DS 20 ; SPACE FOR 10 PUSHES
STACK DS 0 IN LOCAL STACK
END START

This program was written for ASM. The first five lines of the main
portion of the program setup a focal stack and save the CP/M stack
pointer onit. The nextfour lines send ESC E to the console to clear the
screen. The subioutine PCHAR saves the registers on the stack, sets
the C and E registers to the correct values, and calls BDOS to output
the characters. The registers are then restored and control is returned
to the main program. Some BDOS calls alter the registers, so it is a
good idea to save the registers before the BDOS call and restore them
afterward. After control returns to the main program for the last time,
all that remains is to restore the CP/M stack pointer and return to the
monitor. The use of a separately defined stack with a simple return at
the end of the program allows a return tc CP/M without the need for
a warm boot. The second listing is the same program, but for M80.

CLEAR.MAC A VERY SIMPLE ASSEMBLY PROGRAM
i FOR M80. ALLEN GILCHRIST - JAN,
5 1984
;Ql'.Q'll.’EQUATES.Q'I“.G.I.
ESC EQU 027
BDOS EQU as
;DQQI’QIGQQ"AIN PROGRA"&“QQQQQQ“.
START: LXI H,O0 ; LOAD H-L PAIR WITH O
DAD SP ; ADD STACK POINTER TO
; H-L
LXI SP, STACK ; SETUP LOCAL STACK
PUSH H ; CP/M SP ON LOCAL STACK
MVI A,ESC ; PUT ESCAPE IN REGISTER
;A
CALL PCHAR ; OUTPUT IT TO THE
;  SCREEN
MVI A,'E' ; PUT AN 'E' IN REGISTER
; A
CALL PCHAR ; OUTPUT IT TO THE
;  SCREEN
POP H ; GET CP/M SP FROM STACK
SPHL ; SWAP SP WITH H-L
RET ; AND RETURN TO CP/M
;.Q.i.QGGQGSUBROUTINEl.Gll..Oil
PCHAR: PUSH B ; SAVE REGISTERS ON
; STACK
PUSH D
PUSH H
MVI Cc.2 ; SET REGISTERS FOR CP/M
MOV E,A ; CONSOLE OQUTPUT,
CALL BDOS ; AND CALL BDOS
POP H ; RESTORE REGISTERS
POP D
POP B
RET ; RETURN TO MAIN PROGRAM
;Q...!Q'OQQDEFINE STORAGEOQQIOO...Q
DS 20 ; SPACE FOR 10 PUSHES
STACK: DS 0 ; IN LOCAL STACK
END START

Notice that the ORG directive has ween left out of the M80 source
program, and that all labels, except for EQU statements, have colons.
The Microsoft Macro 80 Reference manual indicates the need for the
colons, butitdoes not say anything about not having them for certain
pseudo-opcodes or that the ORG statement may cause problems. |
learned this by trial and error. After discovering these things, | found
that the information is included at the beginning of chapter three of
Alan Miller’s book, ““Mastering CP/M". This book appears to be a
good source for those wishing to learn something about macro-
assemblers in general. Apparently, any label which corresponds to a
memory address must be followed by a colon.

Now that we can use M80, the next step is to write a subroutine. The
simplest call is one with no parameters passed to the subroutine.
Consider the following BASIC source listing.

1 'RRAFERRABRRRRRRRRBRRARARRRRRERERRRRRERRRRRRRRRRRRRR RN

2 ' HELLO.BAS - Allen Gilchrist - January, 1984 *

LR L L Ty T T T T Ty TR PR T T T T e T Py
4 1

10 PRINT "HELLO FROM BASIC BEFORE CALL"

20 CALL HIMAC

30 PRINT "WELCOME BACK TO BASIC"

40 END

This program prints an initial message on the screen, calls the sub-
routine, HIMAC, and then prints another message on the screen after
control returns to the main program. An appropriately simple assem-
bly subroutine follows.

; HIMAC.MAC — A very simple subroutine
; ALLEN GILCHRIST - JANUARY, 1984
;##wesnss Equates and definitions ##xsses

TYPE EQU 9
BDOS EQU 005
HELLO: DB 'Greetings from the M80

48

REMark ¢ June » 1984



DB ' subroutine',10,13,'$"’
;QQG!Q'Q Subroutine *REREIEN

NAME ('HIMAC'); module name (optional)
ENTRY HIMAC ; or PUBLIC  HIMAC defines
; entry point for the module.

HIMAC: PUSH PSW , save registers

PUSH B

PUSH D

PUSH H

LXI D,HELLO ; point to "HELLO"™ string

MVI C,TYPE ; setup for BDOS call

CALL BDOS ; and call BDOS

POP H ; restore reglsters

POP D

POP B

POP PSW

RET ; return to calling program

END ; No start label with end statement

This is quite similar to the PCHAR routine in the CLEAR program
above, except that a different BDOS function is called. The PUSH
PSW and POP PSW statements save and restore the A and FLAG
registers. A greeting is printed on the screen and then control is
returned to the calling program. An ENTRY or PUBLIC statementor a
double colon (HIMAC::) following the label must be used to define
the entry point. In this example, “HIMAC:" is the entry point. The
END statement must not have a start label specified. The startaddress
of the subroutine is taken care of by the L80 loader.

The BASIC main program, HELLO.BAS, can be created with any
editor and then compiled with the command,

A>BASCOM =HELLO <cr>.

If all is well, a relocatable file, HELLO.REL, will be produced on the
default drive. Similarly, the subroutine, HIMAC.MAC, can be
created and then assembled with the command,

A>MBO =HIMAC <cr>.

Again, if everything is alright, another relocatable file, HIMAC.REL,
will be generated on the disk. These can be linked and loaded using
Microsoft’s 1L80.

A>L80 HELLO,HIMAC,HELLO/N/E <cr>.

This will produce an executable file, HELLO.COM, which can be
run in the usual way. This little example may not be very practical,
but it serves to illustrate how an assembly language subroutine can
be written and called from a BASIC main program.

Now back to our original problem, the BASIC terminal program. We
will need to pass parameters to and from the subroutines. A sub-
routine may be called with a CALL statement or a USR function call.
These are discussed in appendix E of the Microsoft BASIC Compiler
manual. The USR function call is normally used with interpreted
BASIC, and the CALL statement is recommended for compiled pro-
grams. Fred Hochschild’s article in the September, 1983 issue of
REMark deals with calling assembly language subroutines from
BASIC under HDOS. Fred describes the USR function call with
parameters passed in the FAC (floating point accumulator).

The CALL statement passes parameter addresses in the registers. If
only one parameter is needed the address is passed in the HL register
pair, if two are passed the DE pair is also used, and when three are
needed the BC register pair is pressed into service. According to the
manual, if more than three parameters are to be passed, the BC
register pair stores the beginning address of a continuous block of
memory storing the remaining values. The terminal program will
only need to pass one parameter.

The following source listing is the BASIC terminal program with
subroutine calls.

1 R e sz e R R R R R R R SR SRR 2RSSR A R0 d ARl ad

2 ' TERM1200.BAS - 1200 baud modem program — Jan. 5, 1984 *
3 ISR ERBRBBRBRRRRRARRBRRRNBRRERRB RSB ERRRIRR R R BB EEREEE
5 DEFINT A-Z

7 PORT=216: STAT=PORT+5: ONE = 1

9 ' Set the USART FOR 1200 BAUD

10 OUT PORT+3, 131

20 OUT PORT+4,3

30 OUT PORT,96

35 OUT PORT+1,0

50 OUT PORT+3,3

80 ' Main loop

90 CH$=INKEY$: 'Check keyboard

100 IF CH$<CHR®(1) THEN 140: 'If no character go to 140

120 CH=ASC(CH$): 'convert to an integer

130 CALL PRTOUT(CH): 'Output to port

140 CALL PORTIN(PC): 'check port

150 IF PC<ONE THEN 90: 'if no data at port go to 90

160 PRINT CHR$(PC);: 'print received character on screen
170 GOTO 90

180 END

Port status checking and 1/0 are handled in two subroutines, PRT-
OUT and PORTIN. Notice how much simpler this BASIC main
program is. The source code for the subroutines PRTOUT and PORT-
IN is given below. Parameters are passed as integers.

; TERMSUBS.MAC - Allen Gilchrist — Jan., 1984

STAT EQU 221 , Status address
PORT EQU 216 ; Port address
PRTOUT: : IN STAT ; Get status byte
ANI 32 ; If bit 5 is on
; Port is ready
RZ ; Return if port not
;  ready
MOV A M ; Move character to A,
ouT PORT ; and output it to Port.
MVI A,O ; Put a zero into
MOV M, A ; memory and
RET ; return.
PORTIN: :IN STAT ; Get status byte
ANI 01 ; If bit 1 is on
; Port has input
JNZ READY ; Jump to label READY
MOV M, A ; Put the zero into
RET ; memory, and return.
READY: IN PORT ; Get data from the port
MOV M, A ; Move the data to
RET ; memory and return.
END

Both subroutines are included in the same source file with their
respective entry points designated by double colons. Since the ad-
dress of the integer parameter in each case is passed in the HL register
pair, no special effort is needed to get the values as long as the HL
pairis not altered before accessing memory. Since no BIOS functions
are called, there is no need to save and restore the registers with
PUSH and POP statements. These routines are not much more
difficult than their BASIC language equivalents, and they work much
faster. This little program will work nicely at 1200 baud. There are
many fine smartterminal emulator programs available commercially
or in the public domain. Occasionally there is a need for a com-
pletely dumb terminal program which does nothing but pass key-
strokes to the port and print port data on the screen. This program has
no exit other than SHIFT - RESET.

Assembly language subroutines can be used with compiled BASIC
main programs to your advantage for many applications. It is not
necessary to be an experienced hacker, but you must be somewhat
familiar with assembly language, and you must be able to use the
Microsoft M80 macro assembler. Perhaps this introduction to the use
of M80 will help someone get started. Who knows, it might be fun!

*

REMark ¢« June » 1984

49

/


http:HELLO.COM

HUG

NEW
PRODUCTS

NOTE: The [-37] means the product is available in
hard-sector or soft-sector. Remember, when ordering
the soft-sectored format, you must include the “-37"
after the part number; e.g. 885-1223-37.

885-8025-37 ZDOS
FAST EDDY Text Editor
and BIG EDDY. ......cicosisaunisisimsssssmnonsesns $20.00

Introduction: FAST EDDY is a text file screen editor that was written
for everybody. It was written using the basic commands and keypad
keys, so that anyone, even with no experience with an editor, can
learn to use it while reading the instructions.

For those files that are too large for your computer’s memory, BIG
EDDY will handle the breaking up of the text for editing with FAST
EDDY.

Requirements: This disk requires the ZDOS operating system on an
H/Z-100 computer. A printer is not required, but both FAST EDDY
and BIG EDDY have printer options. Only one disk drive is required.

BIG EDDY can be used with large files. A second drive (or high
density drives) may be required to break up large files which cannot
fit into memory. The original file is not changed or deleted.

The following files are included on the HUG P/N 885-8029-37
ZDOS FAST EDDY Text Editor and BIG EDDY File Handling Utility:

EDITOR .COM
BIGED .COM
BIGED .DOC
INSTRUCT .DOC
TUTOR1 .DOC
TUTOR2 .DOC
TUTOR3 .DOC
RETURN .COM

Author: Hubert L. Reeder

FAST EDDY - This text file screen editor and its documentation
have been designed for anyone not familiar with using an editor. The

program uses commands and keys that are easy to remember and
use,

The editor contains a limited number of commands, however, the
commands are designed to provide a useful, easy-to-use editor. It
does not have complex options that require time and effort to use.

50

The editor contains a command mode and edit mode. The following
are a brief list of the options:

COMMAND MODE
Typed Commands:

LOAD filename.ext
SAVE filename.ext
SAVE XX filename.ext
MERGE filename.ext

(load file)

(save file)

(save XX number of lines)
{merge two files)

PRINT (print enter file, NN lines per page)
PRINT NN {(print double spaced)

FIND anyword (find the first occurence of a word)
MARGIN nn xx (set left margin, nn, right margin, xx)
CMPRESS (replace spaces with tabs in new text)
EXPAND (cancel the CMPRES command)

BYE (exit to CP/M)

Key Commands:

Up arrow -- enter EDIT mode at first line of text

Down arrow -- enter EDIT mode at last line of text
HOME -- enter EDIT mode at pointer (last cursor location)
DELETE -- cancel partial commands or stop printer

FO -- erase all text

EDIT MODE
Key Commands:

Up arrow -- move cursor up one line

Down arrow -- move cursor down one line

Right arrow -- move cursor to the right one character
Left arrow -- move cursor to the left one character
HOME - return to COMMAND mode

IL -- insert line

DL -- delete line

IC -- insert character

DC -- delete character

f0 -- block erase

f1 - align paragraph within left and right margins
f2 -- justify right

f3 -- indent on/off

f4 -- margin off

f5 -- split line

f6 -- find next occurence of word, after FIND of COMMAND mode
f7 -- move backward in text

f8 -- move forward in text

f9 -- center line

f10 -- tab set/release

f11 - jump left

f12 — jump right

REMark * June - 1984



These are most of the basic commands of FAST EDDY. Please note
that it has the ability to align paragraphs to new margin settings and
then the option of right justifying the paragraph text.

Details of how to use these options are contained in the documenta-
tion. The TUTOR1, TUTOR2, and TUTOR3 documentation files are
included with the disk to give the user experience in using FAST
EDDY while reading the doc files.

BIG EDDY -- This program is a utility to work with text files which
are too large to be edited by FAST EDDY directly because of memory
limitations. BIG EDDY can be used to browse a file of any size of
which the user can break the large file into smaller parts for editing
with FAST EDDY.

BIG EDDY asks for the input filename and an output filename. It
keeps track of the subfiles and names them accordingly.

BIG EDDY has some useful options to aid the user in preparing the
text for smaller files. The BROWSE mode is similiar to the EDIT mode
of FAST EDDY, except that no editing can be done to the file.

The following are a list of the commands of BIG EDDY:

SAVEALL -- save the entire text in memory to the disk
SAVEPART -- save part of the text in memory to disk
NOSAVE - discard part of text

PRINT -- same as FAST EDDY’s print commands

BYE -- exit to CP/M

With the SAVEPART command, the user can save the text by subject
or modules of his choice. Using the CP/M PIP program, the subfiles
can assemble the files into any order.

Comments: This version of FAST EDDY, with the editing features,
e.g. align paragraph and right justify, allow formatting features that
make it a powerful, easy-to-use editor.

TABLE C Rating: (1),(3),(10)

IT’S
IMPORTANT!!

THAT YOU SIGN UP
NOW FOR THE

< HEATH/ZENITH USERS’
>

Heath, /2™
Users
Group

REMark « June * 1984

\'- Heath /222
= Users’
Group

HUG Price List

The following HUG Price List contains a list of all products not
included in the HUG Software Catalog. For a detailed abstract of
these products, refer to the issue of REMark specified.

Part Decription Selling  Volume

Number of Product Price - lssue
HDOS
885-1030[-37] Disk Ill, Games Il .......cccovvurcinnene 5-2
885-1096[-37] MBASIC Action Games .... 5-2
885-8026 Space Drop ........cc.cceeveunee 5-2
885-8027 HDOS SCICALC ........ccovvcnareriaraans 5-3
CP/M
885-1234[-37] CP/M Ham Help .......ccccunnneen. 5-2
885-5001-37 CP/M-86 KEYMAP .......... 5-4
885-5002-37 CP/M-86 HUG Editor . 5-5
885-8025-37 CP/M 85/86 FAST EDDY ........... $20.00 52
ZDOS
885-3009-37 ZBASIC Dungeons & Dragons ..... $20.00 53
885-3010-37 ZDOS KEYMAP ......ccovcvninninviiniens $20.00 54
885-3011-37 ZDOS ZBASIC Games Disk ......... $20.00 5-5
885-3012-37 ZDOS HUG Editor ........ccceeeeiuenien. $ 20.00 5-5
885-8028-37 ZDOS SCICALC .....cooccomenrersemians $20.00 5-2
MISCELLANEOUS
885-0004 HUG 3-Ring Binder .........ccoounens $ 575
885-4001 REMark Volume 1, Issues 1-13 ... $20.00
885-4002 REMark Volume 2, Issues 14-23 . $ 20.00
885-4003 REMark Volume 3, Issues 24-35 . $20.00
885-4004 REMark Volume 4, Issues 3647 . $20.00
885-4700 HUG Bulletin Board Handbook ... $ 5.00 5-2

NOTE: The [-37] means the product is available in hard sector or
soft sector. Remember, when ordering the soft sectored format,
you must include the “-37" after the part number; e.g. 885-1223-
37.

Ordering Information

|Far Visa and MasterCard phone orders; telephone Heath Company
Parts Department at (616) 982-3571. Have the part number(s), de-
scription, and quantity ready for quick processing. By mail; send
order, plus 10% postage and handling, up to.a maximum of $3.50 to
Heath Company Parts Department, Hilltop Road, St. Joseph, MI
49085. Visa and MasterCard require minimum $10.00 order.

Any questions or problems regarding HUG software or REMark
magazine should be directed to HUG at (616) 982-3463. RE-
MEMBER - Heath Company Parts Department is NOT capable of
answering questions regarding software or REMark.

51



Connecting the H/Z-100

to a Gemini Printer

The following describes how to connect an H/Z-100 computer to a
Star Micronics Gemini printer with parallel input. This has been
tested on a Gemini 10X printer, but should also work witha 10 0r 15,
since with one minor exception (which is not used), the manuals
indicate that the connections are identical.

The parallel-interface Gemini printers are Centronics ‘‘compatible’”’,
and have an Amphenol “/Blue-Ribbon” type connector. The mating
connector for the printer-end of the interconnecting cable should be
an Amphenol type 57-30360 or equivalent. This has 36 pins and an
overall shape similar to that of the familiar DB25 D-subminiature
type, but it is larger and the internal construction is different.

Standard configured H/Z-100 computers have three interface ports
on their rear panel, all of which use DB25 D-subminiature 25-
position connectors. |1 (female) and }2 (male) are serial ports. |3
(female) is the parallel port connector to be used with a parallel
interface printer. The connector needed for the computer-end of the
interconnecting cable must be male.

Both of the connector types needed should be widely available,
although the author had more difficulty locating the Centronics type
connector than the DB25. The Centronics type connector complete
with metal back shell is about $9.00. The DB25 with back shell
(which is sold separately) is about $5.20 at Radio Shack (catalog
numbers 276-1547 and 276-1549).

The interconnecting cable should be of good quality and shielded.
Thirteen signal conductors are required, not counting signal returns,
grounds, or shield. In order to provide a separate insulated conductor
for the signal ground and at least one for the designated returns, a
shielded cable with at least 15 conductors is needed. Any additional
conductors in the cable used can be left as spares or connected to
separate the various return lines. As many as 22 conductors may be
used, but only 15 are necessary. A ten-foot length of good quality
cable bought new in small quantity will cost about $8.00 to $12.00,
so the cost for cable and connectors will total about $25 or so.

Before proceeding further, it is worth stating that a cable is a critical
element in any system. A poorly made cable will cause no end of
problems. These can include excessive radio frequency interference
caused by radiation through inadequate or poorly connected
shields, intermittent operation or no operation at all, or, even worse,
equipment damage. Therefore, one should not attempt to make his
own cable unless he is capable and experienced at soldering, has the
patience to do the fine and tedious work required, and knows what
he is doing! Connections must be well made, adequately separated
and insulated, and properly supported by the connector shell in
order to last.

The connections needed between the Gemini printers and the H/Z-
100 are listed in Table I. The wire colors are those the author used,
and were determined by separating the wires in a sequence that

Jerome H. Horwitz
14413 Ansted Road
Silver Spring, MD 20904

provided the best physical fit to the arrangement of the connector
pins to be wired. Figures 1 and 2 depict the layouts of the connectors
used at each end of the cable.

Care and skill are required to make a good cable, but a few hints may
improve the results. Knives or razor blades used to cut and trim
insulation shéuld be sharp. Use a small soldering iron (one suitable
for printed circuit work) as there is not much room around each pin,
and keep it clean and tinned. Do not overheat joints, as the wire
insulation or the connector can be damaged. Strip the cable outer
jacket carefully (do not cut the braid or foil shield) so that the exposed
wires are just long enough to reach from the cable entry (usually in
the center of the connector shell) to the farthest corner pin, with no
extra. Other wires should be cut shorter, so that the cable jacket can
end up well inside the shell after assembly. Each wire should have a
short (about 1 /2 inch) piece of sleeving slipped over it before solder-
ing. This sleeving is pushed back down over the exposed part of the
connection after soldering to prevent shorts between adjacent con-
nections. It is also good practice to slip a two- or three-inch long
piece of sleeving over the cable jacket for strain relief. This should be
slid down inside the shell prior to fastening the cable clamps. And be
sure that the shell and sleeving are on the cable prior to assembling
the connector!

WT/ WT/ WT/ WT/ WT/
BLK VIO BRN GRY R ORG BLK BRN R ORG Y b3

13 12 1t 10 9 =] 7 6 S 4 3 z 1

25--24——-23--22-—21--20—-19--18-~17 1& 15 14

Shid WT BLU GRN

Figure 1. Layout of pins for DB25 connector at computer end of cable.

WT/  WT/  WT/

BLK & Y

Shid ERN R ' ! !
; : : PWT/ L WT/

! BLK VIO | GRY ! ORG i BRN i ORG | Y

i i i i H H H ! ' H i H i H ) i i
18 17 16 15 14 12 12 11 10 9 8 7 & S 4 I 2 1

36 35 34 33 32 31 30-29-28-27-26-25-24-23-22-21-20~-19

GRN | WT

BLU

Figure 2. Layout of pins for Centronics compatible connector at printer
end of cable.

52

REMark « June « 1984



Table 1. Connections between H/Z-100 series computers and Gemini prin-
ters with parallel-interface.

SIGMNAL PRINTER PRINTER H/Z-100 DESCRIPTION OF
NAME* PIN IN/OUT PIN CABLE CONNECTION
—-STROBE 1 IN 1 YELLOW

DATA 1 2 IN 2 WHITE/YELLOW
DATA 2 3 IN 3 WHITE/ORANGE
DATA 3 4 IN 4 WHITE/RED

DATA 4 5 IN 5 WHITE/BROWN
DATA 5 6 IN 5] WHITE/BLACK

DATA 6 T IN T ORANGE

DATA 7 a8 IN 8 RED

DATA 8 9 IN 9 GRAY

—ACK 10 ouT 10 BROWN

BUSY 1 ouT 11 VIOQLET

PAPER END 12 auT —_ (Not used)
SELECTED 13 ouT - (Not used)
—_—— 14%+ ouT — (Not used)
—————— 15 ouT - (Not used)
SIGNAL GROUND 16 — i2 BLACK

CHASSIS GROUND 17 — 17-25—! FOIL SHIELD +

| DRAIN WIRE

+5 VOLTS DC i8 ouTt —_ I (Not used)
RETURN PIN 1 19— —— 17=——| WHITE—Pins 19-30
RETURN PIN 2 20-——| —— 18—I at the printer
RETURN PIN 3 2l——| —— 19———I connector are
RETURN PIN 4 22——| —— 20——1| bussed
RETURN PIN 5 2F——1| —— 21——| together;
RETURN PIN & 24————1 = 22———| pins 17-25
RETURN PIN 7 25— — 23— at the
RETURN PIN 8 26— | —— 24———| computer
RETURN PIN 9 2T === 25—-I| connector are
RETURN PIN 10 28———] ——— - bussed

RETURN PIN 11 28— — - together.
RETURN PIN 12 30——==| — ECE

-INPUT PRIME 31 IN 16 BLUE (H/Z~-10D0

name is "INIT")

—ERROR 32 out 15 GREEN

EXTERNAL GROUND 33 - —-— (Not used)

—— 34 — - (Not used)
————— 35 —— e (Not used)
————— 38 R - ({Not used)

* A "." before a signal name denotes the complement (in lieu of over-
score).

*% The manual for the Gemini 10 and 15 printers lists pin 14 as -
AUTOFEEDXT", which is described as an optional automatic line feed. This
pin is listed as unused in the preliminary manual for the Cemini 10X. ¥\

IT'S
IMPORTANT!!

THAT YOU SIGN UP
NOW FOR THE
INTERNATIONAL

HUG
CONFERENCE

see registration
on page 5 of
this issue

reading a borrowed
copy of REMark...

maybe now is the time to join the National
Heath/Zenith Users’ Group. You will re-
ceive:

e a copy of REMark filled with new and exciting
articles and programs each month

® access to the HUG library filled with a large
variety of programs

e discounts on avariety of Heath/Zenith computer
products (see REMark January, 1984 issue for more
details)

And remember, your local HUG is an excellent
source of information, support and comradery. A
membership package from the National Heath-
/Zenith Users’ Group contains a list of current local
HUG clubs as well as other interesting information.

/ 4 »
-¥,‘\' ot 2

Group

REMark * June = 1984

53



It’s Contest Time At
The Heath /Zenith

Users’ Group

Bob Ellerton
HUG Manager

Are you sitting there staring at a blinking cursor wondering what to
do with your spare computer time?

Have you created a really neat spreadsheet that you feel could be
useful to other members of the Heath /Zenith Users’ Group?

Have you created a slick game for yourself or the kids that's the
greatest thing since PAC-something?

Are you interested in picking up an extra $1000.00 Gift Certificate
for Heath or Zenith Data Systems products absolutely FREE?

If you have answered yes to at least one of these questions, read on!

The Heath /Zenith Users’ Group will be sponsoring not one, but two
software contests beginning April 1, 1984 and ending July 1, 1984.
You may enter both contests if you wish. And, you may enter these
contests as many times as you like.

Heath /Zenith Users’ Group Spreadsheet Competition

The first of the two contests will be based on currently available
spreadsheet programs from Heath/Zenith (e.g. SuperCalc, Multi-
plan, etc.). Entries to this category should be worksheets that are
composed using one of the major spreadsheet programs. Any topic
for your worksheet will be accepted (e.g. Tax Calculations, Payroll,
General Ledger, Inventory, etc.).

19 a3

AR : -
Specific Rules for the Spreadsheet Competition .

1. You mustinclude at least two files with each worksheet entered in
the contest. The first file should include documentation and instruc-
tions on the use of your worksheet as well as a clear description of the
results to be expected from the use of your creation. The second file
should be the worksheet itself. You may include additional files if
you feel examples or further explanations are required to get the most
from your entry.

2. Your worksheet must be capable of running on the H8, H/Z-89
or the H/Z-100 series computers. The spreadsheet program used to
create your work must be one currently available from Heath Com-
pany or Zenith Data Systems (described in the Heathkit Catalog).

3. Entries to the Spreadsheet Competition must be sent to:

Heath/Zenith Users’ Group Spreadsheet Competition
Hilltop Road
Saint Joseph, Ml 49085

The second contest will concentrate on your ability to use the
graphics facilities of your computer to build a game. This competi-
tion will be open to all languages currently available from Heath-
/Zenith or described in the Heathkit Catalog. Further, you may use
languages from other sources providing that the finished software
will run without having the user purchase software not found in the
Heathkit Catalog.

54

REMark = June = 1984



Specific Rules for the Graphics Game Competition

1. Entries must include at least two files on the disk. One file should
be the game itself. The remaining file must contain the necessary
start-up instructions and documentation to allow proper operation of
your game. Additional files may be included should you feel they are
necessary for the end user to get the most from your creation.

2. Your entry must be capable of running on an H8, H/Z-89 or the
H/Z-100 series computer using the various graphics modes availa-
ble to each computer. Each game must be of your design and not a
translation from another available computer video game.

3. Entries to the Graphics Game Competition must be sent to:

Heath/Zenith Users' Group Graphics Game Competition
Hilltop Road
Saint Joseph, Ml 49085

General Rules:

1. All entries to either the Spreadsheet Competition or the Graphics
Game Competition become the property of the Heath /Zenith Users’
Group Software Library.

2. Each entry must be accompanied by the Program Submittal and
Agreement Form found on page 27 of the January 1984 Issue of
REMark. The form must be completed by you.

3. All entries must be submitted on disk and be accompanied by
suitable documentation describing the purpose of the entry. Neces-
sary information on setup and operation must be included for the
reviewer.

4. Your entry must be clearly marked with the following words:
“Heath /Zenith Users’ Group Contest Entry”

If possible, these words should be included in your documentation
file to ensure the proper handling of your contest entry,

Selecting the Winners:

1. The contest for both the Spreadsheet Competition and the
Graphics Game Competition will be divided into two parts. During
the first round, HUG Staff members will select those programs or
worksheets that are thoroughly documented and perform as de-
scribed by the author. These programs will then be placed on one or
more disks containing similar games or worksheets.

2. Authors of programs selected to appear on a HUG Disk will then
be informed that their work has been placed in the final competition
with other similar programs.

3. AS A BONUS, authors selected for the final competition will
receive any piece of Heath/Zenith or HUG software FREE along
with a copy of the disk containing their work.

4. Final judging will be provided by the members of the Heath-
/Zenith Users’ Group via a postcard sent with each of the disks
ordered from the HUG Library. The worksheet and graphics game
receiving the most vates before November 1, 1984, will be chosen as
the Grand Prize Winners in each of the two categories.

Two winners will be selected by popular vote, one from each cate-
gory to receive a $1000.00 Gift Certificate from the Heath/Zenith
Users’ Group which can be used to purchase a variety of products
available at any of your local Heathkit Electronics Centers or through
Heathkit Mail Order Catalog. The two winners will be announced in
the January 1985 issue of REMark.

REMark * June = 1984

55



Using A Speech Synthesizer

On An H/Z-89

l had seen the Type-‘N-Talk Text-to-Speech Synthesizer in the
Heath Catalog, but was scared away by the note: Not recommended
for novices at this time. But at the second National HUG Conference,
I saw the new model, the VOTRAX Personal Speech System, and fell
in love with it. Plugged into the H/Z-89 in place of a printer, this unit
will speak whatever text is thrown its way. It contains its own speaker
and power supply, parallel as well as serial ports, and a row of setup
switches on the back to match itto your computer. It also plays music
and has a real time clock and various alarms. | bought one. Even
though itis simple and easy to use, some tips might be helpful. Here
is a beginner’s guide for CP/M users.

Getting Started

The best way to startis to plug the Speech System into port 320Q), the
middle one of the three serial ports in back of the H/Z- 89. This is
normally the TTY port and is simplest because no ““handshaking’ is
required. Put all the Speech System'’s configuration switches down.
Now push up numbers 1 and 3 to set the unit to 300 BAUD and
number 6 to cause the unit to speak a message when powered up.
Insert a bootable disk into your computer and run CONFIGUR.
When CONFIGUR asks

Standard system (Y or N)? <Y¥>:

press the Y key. When the system returns to CP/M, reset the compu-
ter and do a cold boot. This last step is crucial. Not all of the
CONFIGUR commands implement properly without saving to disk
and rebooting. In this case without rebooting, the Speech System will
speak “error seven’” and nothing else. A call to Studio Computers,
who sold me my system, brought me this tip and ended a long night
of frustration.

Now let’s run a test. Type
PIP TTY:=CON:

and press the ENTER key. PIP will then channel all input from the
CONsole to the TTY port, where we have connected the Speech
System. Anything typed on the keyboard will be spoken by the
Speech System. Type in your name and press RETURN; type in
anything your wish: Votrax will speak it. Your system works! Note
that you are connected directly to the Speech System and can try out
all of its commands. Forexample, set the time to 7:30 a.m. by typing
“[escape]T073000". Have ittell you the time by typing “’[escape]T".

When you are tired of letting your fingers do the talking, type a
CONTROL-Z (hold the control key down while you type a Z), This
will return you to CP/M.

Getting Started In MBASIC

Now that you know the Speech Synthesizer works, let's see what you
need to do to use it in BASIC. MBASIC has the LPRINT command for
sending output to a printer. You could reCONFIGUR your H/Z-89

Bill Boyd
3617 Beechollow Drive
Memphis, TN 38128

so that this output goes to the Speech System instead. However, this
means you couldn’t use the printer. What is needed is a switch
allowing changes from printer to Speech System and back. Try the
following simple program, SWITCH.BAS

10 'SWITCH.BAS SWITCHES LPRINT FROM PRINTER TO SPEECH
SYSTEM AND BACK

20 POKE 3,41 'SWITCH TO VOTRAX AT 320Q

30 LPRINT "TESTING THE VOTRAX PERSONAL SPEECH SYSTEM"

40 POKE 3, 169 'SWITCH BACK TO PRINTER AT 340Q

50 LPRINT "TESTING THE PRINTER"

60 END

Run this program with the Speech System connected to the TTY port
(port 320Q), the middle serial pont of the H/Z-89) and the printer
connected to the LPT port (port 340Q, the outermost port). The
message in line 30 should be spoken by the Speech System and the
message in line 50 should be printed by the printer. Now you have it:
to switch to the Speech System at port 320Q, write the decimal
number 41 to memory location 3. And to switch back to the printer at
port 340Q), write the decimal number 169 to the same memory
location.,

As simple as this is to do, understanding it is almost as simple. CP/M
reserves memory location 3, the so-called IOBYTE, as a table to
direct output from what it calls “logical devices” to “physical de-
vices”. CONFIGURed to the Standard Heath System, this IOBYTE
has binary value 10101001, which is decimal 169. The leftmost two
bits assign the logical device LST to port 340Q when they are set to
10 and to port 320Q when set to 00. The statement POKE 3,41
changes the value of IOBYTE to 00101001, thus sending the LST
output to port 320Q. The statement POKE 3,169 changes the 10-
BYTE back to its original value, thus sending the LST output to port
340Q again.

Using the Speech System In BASIC

Now that you have the Speech System interfaced to the H/Z-89 and
are able to switch back and forth between it and the printer, try the
program in Listing 1. A simple program for adding two numbers and
printing the result, it prompts the user with a combination of verbal
and on-screen commands. Near the beginning is a routine for asking
the user whether he wants to play again or quit. At line 130 is the
main routine for inputting the numbers to be added and speaking the
result, while simultaneously printing it on the terminal screen. At line
250 is a routine for passing time while waiting for the Speech System
to finish talking. And, of course, lines 20 and 290 switch the LPRINT
command to the Speech System and then back to the printer.

Let us look more carefully at the time delay routine. In line 40, the
variable PHRASE$ is set equal to the expression to be spoken.
LPRINT is then used to send this expression to the Speech System,
and the routine at line 250 is called. First the routine sets L% equal to
the number of characters in PHRASE$. It then goes through a loop
70%*L% times to create a delay long enough for the Speech System to

56

REMark + June 1984



10
20

' ADDUM.BAS - ADDS TWO NUMBERS USING VOICE PROMPTS
POKE 3,41 'SWITCH LPRINT TO THE VOTRAX PORT

30 ' BEGINNING — PLAY OR QUIT
40 PHRASE$="DO YOU WANT ME TO PLAY CALCULATOR WITH YOQU?":LPRINT PHRASES$
50 GOSUB 250 'DELAY FOR SPEECH
60 PRINT "ANSWER Y FOR 'YES' OR N FOR 'NO'"
T0 Q8=INPUTS(1)
80 IF Q8$=CHR$(0) THEN 70 'CYCLE BACK WAITING FOR
RESPONSE
90 IF Q8="Y" OR Q§="y" THEN 130
100 PHRASES = "I'M SORRY YOU DON'T WANT TO PLAY. HAVE A GOOD DAY. BYE NOW."
110 LPRINT PHRASE$:GOSUB 250
120 GOTO 290 'QUIT
130 ' MAIN ROUTINE - INPUT TWO NUMBERS AND ADD THEM
140 PRINT
150 PHRASES = "ENTER YOUR FIRST NUMBER":LPRINT PHRASES:GOSUB 250
160 PRINT "FIRST NUMBER IS ";:INPUT Xi¥%
170 PHRASES = "ENTER YOUR SECOND NUMBER":LPRINT PHRASES$:GOSUB 250
180 PRINT "SECOND NUMBER IS ";:INPUT X2%
190 SE=X1F+x2%
200 PRINT " THE SUM IS ", 8%
210 PHRASES = "THE SUM IS ":LPRINT PHRASES$;S%:GOSUB 250
220 PRINT:PRINT:PRINT:L#=15:G0OSUB 270
230 PHRASES = "DO YOU WANT TO DO ANOTHER?" :LPRINT PHRASES:GOSUB 250
240 GOTO B0
250 ' THIS ROUTINE CREATES ADEQUATE DELAY FOR THE SPEECH UNIT TO FINISH
260 LE=LEN(PHRASE$) 'DETERMINE LENGTH OF SPOKEN PHRASE
270 FOR I% = 1 TO TO*LE:NEXT IZ
280 RETURN
290 POKE 3,169 '"SWITCH LPRINT BACK TO PRINTER PORT EO
300 END
Listing 1
LIST: LDA IOBYTE
(lines omitted for brevity)
CALL INDXIT
DW LPT20UT ;0: NEW VOTRAX PSS (replaces TTYOUT)
DW CRTOQUT :1: CRT
DW LPTOUT ;2: LPT
DW DBD :3: DIABLO
PUNCH: LDA IOBYTE
(lines omitted for brevity)
CALL GOTOIT
DW TTYOUT y8: TIrY
DW LPT20UT :1: NEW VOTRAX PSS (replaces DMYOUT)
DW MDOUT ;2: UP1 MODEM PORT OQUTPUT
DW CRTOUT
LPT20UT PUSH A ;SAVE REGISTER A ON STACK
LDA MODE ; REVERSE BIT 2
ARI 04H ; OF MODE
STA MODE ; BYTE
MVI A, ODOH :CHANGE PORT FROM EO
STA HB4PT3 ; TO DO
POP A ;RECOVER REGISTER A
CALL LPTOUT ; CALL LINEPRINTER OUTPUT ROUTINE
PUSH A ;SAVE REGISTER A
LDA MODE ;RESTORE BIT 2
XRI 04H ; OF MODE BYTE TO
STA MODE ; ITS ORIGINAL VALUE
MVI A,DECOH ;RESTORE PORT TO
STA HB4PT3 » ED
POP A ;RECOVER REGISTER A
RET ;RETURN
Listing 2

REMark « June = 1984

57



finish saying the phrase before returning to line 60 to continue
executing the program. Without this delay, the computer would get
to the next step before the Speech System finished talking.

A delay is also thrown in at line 220 to give the user a moment to
admire the answer before asking if he would like to do another
problem. Note that in this case L% is given a value and only the
time-delay loop part of the routine is called.

The Buffer Problem

If your needs are simple, you can now write programs using the
printer and the Personal Speech System. CONFIGUR may be used to
change from 300 BAUD to any other baud rate obtainable with the
Speech System’s configuration switches and it may be used to move
the Speech System to a different port. To change one of these, answer
the question about the Standard System ‘no’ and go to A orto C on
the main menu. By choosing D on the menu and then setting item A
on the next menu to false, you can eliminate running CONFIGUR
automatically on power-up.

If you want to send a file out to the Speech System, just use PIP. For
example, if you have the Gettysburg Address in a disk file named
GETTYSBG.ADD, type

PIP TTY:=GETTYSBG.ADD
and the Speech System will recite it.

A problem can arise here. The VOTRAX Personal Speech System has
3K of RAM buffer. If a long enough file is sent to it, this buffer will fill
up and part of the file will be lost. This problem can be overcome by
choosing main menu item A of CONFIGUR, then setting the BAUD
rate and port assignment of LST to match the Speech System and
setting the Printer Ready Signal Polarity to HIGH. As long as its buffer
isnot full, the Speech System will hold the RTS line (pin 4 of the serial
connector at the back of the computer) high, but will change itto low
as the buffer approaches full. CP/M will then hold further transmis-
sion of data until this line is again high. In this way, the buffer will not
be overrun and data lost.

The problem with this approach is that one cannot use the printer
again without rerunning CONFIGUR, so that one cannot switch in
the middle of a program. To fix this problem, we must turn to the
CP/M BIOS, which contains the code for sending data to the output
devices.

Changing the Bios

We need to change the BIOS to support a second “printer”, the
Speech System, at port 320Q (hex DO) while not disturbing the one at
port 340Q (hex E0). | have an H-14 printer which poses an additional
problem. Its ready signal is RTS low as opposed to the Personal
Speech System’s RTS high. Because CONFIGUR sets all ports for a
high signal or all ports for a low signal, one cannot set the Speech
System’s port for an RTS high and the H-14's port for an RTS low. The
changes that we will make to the BIOS solves both problems.

Listing 2 shows the pertinent sections of the new BIOS. One routine,
LPT20UT, has been added and two lines changed in LIST and
PUNCH. In LIST the call to TTYOUT has been replaced by a call to
the new routine LPT20UT, and in PUNCH a call to DMYOUT (an
empty routine containing just a return) is replaced by a call to
LPT20UT. Thus, if LST is CONFIGURed for TTY (bits 7,6 of IOBYTE
set to 00, or binary 0), a call to LST will call the new routine.
Furthermore, if PUN is CONFIGURed for PTP (bits 5,4 of IOBYTE set
to 01, or binary 1), a call to PUN will also call the new routine.

What does the new routine do? LPT20UT reverses bit 2 of the MODE
byte, changes the printer port from EO (340Q) to DO (320Q) and then

calls LPTOUT, the usual printer routine. Upon return from LPTOUT
these are changed back to their original values. The effect of chang-
ing the printer port is to allow LPTOUT to send its output to the
Speech System rather than the printer. Thus, acall to LPT20UT is the
same as a printer call except that the output goes to the Speech
System.

Bit 2 of MODE indicates the polarity of the LPT ready signal. If bit 2 is
0, the LPTOUT routine interprets an RTS low signal as indicating the
printer is ready to receive more data. But, if bit 2 is 1, the LPTOUT
routine interprets an RTS high signal as indicating the printer is ready
to receive more data. Thus, LPT20UT has the effect of reversing the
RTS signal. The combination of switching to the Speech System port
and reversing the RTS signal allows the H-14 and the Speech System
to be run using the same CONFIGURation.

If your printer uses an RTS high signal to indicate that the printer is
ready, then you need to leave the three lines following each of the
PUSH A statements out.

Because the print routine LPTOUT checks the RTS line to be sure the
Speech System is ready each time it outputs a character, the Speech
System’s buffer cannot be overfilled as it could when using the TTY
output routine to send to it. With this change we now have full use of
the VOTRAX Personal Speech System and the H- 14 printer. %

About the Author:

Bin Boyd is Operations Manager of COM PRO, Inc., a manufac-
turer of 5xS telephone equipment, and a Visiting Associate Profes-
sor of Operations Management at the University of Arkansas. His
present interests include speech synthesis and recognition, the
H-89 and HERO |I.

The
““Getting Started
with
Assembly Language”’
Contest Winners

Pat Swayne
HUG Software Engineer

' have selected the winners of the contest | announced in my
last “Getting Started with Assembly Language” article (in the
February 1984 issue). The HDOS winner is Stephen Liddle of
Pleasant Grove, Utah, and the CP/M winner is John F. Smith
of Horsham, Pennsylvania. Congratulations to both of them
for producing programs that passed difficult operational
tests. In fact, the two winning programs were the only two of
all submitted that passed all tests! In next month'sissue, | will
start up the ‘Getting Started’ series again, and explain the
tests | applied to the contest programs. | will also include the

winning source codes, and explain how they work. Don’t
miss it!

58

REMark * June + 1984



H/Z-100 Software Review

Microsoft COBOL-86 (Z-DOS)

Introduction

Heath and Zenith Data Systems are providing the H/Z-100 owners
with a “great” selection of software. The “NEW"’ Microsoft COBOL-
86 Compiler is an excellent example that makes full use of the
H/Z-100. Itis priced at $395.00 in the 1983 Christmas Catalog No.
863R, Catalog No. MS-463-3. It requires two (2) high-capacity disk
drives and the Z-DOS Operating System. We should be thankful for
this attractive price! This is about one-half the IB and *'something”
company price of $700.00.

COBOL offers a portable, standardized business-oriented language
that is ideal for processing business data. COBOL provides the
powerful use of disk drives; CRT screen-handling; English self-
documenting, long variable names; and readable-structured pro-
grams. It is used almost completely by government agencies and
many large companies. COBOL-86 offers the H/Z-100 owner the
capability to work on main-frame computer problems at home or at
his small business. It also offers the owner the opportunity to learn
this language with his own computer and possibly improve his
employability.

The timing could not have been better for any present or just coming
aboard H/Z-100 owners. HUG has just started the publication of the
instructional COBOL Corner Series in REMark. The first article
brought inquiries of how can COBOL be run on the H/Z-100!
COBOL-86 solves this problem.

COBOL-86

COBOL-86 is nearly some of the same as COBOL-80. | will explain
the main differences. Prior reading of the first COBOL Corner-|
article might be helpful in understanding this article.

1. One main difference is that COBOL-86 uses the Z-DOS Operat-
ing System. COBOL-80 uses CP/M-80 (also available for HDOS).
This means that disk handling commands and Error Messages will be
different.

2. COBOL-86 Hardware and Software requirements are:

A) Two (2) soft-sectored 5.25 inch drives or one (1) 5.25 inch and
aWinchester disk drive. You could also use one ortwo 5.25 inch and
one or two 8 inch disk drives.

B) Printer capable of 132 print positions per line.

C) Z-DOS Operating System Software.

D) Editor or Z-DOS line text editor, EDLIN. | use PeachText (also
known as MagicWand) in the program mode. We will further discuss
this laterin this article. | am still looking for a better Editor that is more
to my liking!

E) COBOL-86 can make use of colored video if you have it with
your H/Z-100.

H. W. Bauman
493 Calle Amigo
San Clemente CA 92672

3. COBOL-86 is already configured for the H/Z-100. You do not
need to configure the CRT display as required for COBOL-80.

4. COBOL-86 Screen Section provides for color controls if your
H/Z-100 is equipped for color video display. There are two (2)
controls. Foreground-color controls the color of the characters. The
color is chosen by a value of 0-7 with white as the default. The color
definitions are as follows:

0 BLACK 4 RED

1 BLUE 5 MAGENTA
2 GREEN 6  YELLOW

3 CYAN 7  WHITE

The other, background-color, controls the color of the screen field
and this coloris also chosen by the range of 0-7 with black as default.
These colors would provide an excellent way to show negative
values (RED) and positive values (GREEN) for example. | do not have
color available, so | was not able to experiment with the color
facilities.

5. COBOL-86 has an Interactive Debug Facility that allows the
programmer to control the execution of a program and to examine or
change data items in the program! When the program is compiled, a
“debug information file” is created along with the object file. This
information file contains the line numbers and data-names from the
program. The extensive list of debug commands available can use
the numbers and names to affect data items and program execution
in a number of ways to enable the programmer to find the program
problems. This is a COBOL subject that must be covered in detail
with a sample program. If there is sufficient interest, | will prepare an
article on this topic for COBOL Corner when we get to advanced
programs that are hard to debug with the other usual ways. Please let
me have your input! COBOL-80 has dynamic debugging
statements - READY TRACE/RESET TRACE and EXHIBIT. These
are just a part of COBOL-86 debugging commands. The COBOL-80
and COBOL-86 debugging commands are extensions to the ANSI-
74 COBOL standards.

6. If the COBOL-86 programmer uses TAB stops in his source pro-
gram, he must use the stops defined below:

8, 12, 20, 28, 36, 44, 52, 60, 68, 73
The COBOL-80 programmer must use the following TAB stops:
7,17, 25, 33, 41, 49, 57,65, 73

These stops can be changed by patching the internal TAB table in the
COBOL Compiler. Both manuals explain how to do this if you are
handy with “patches”. The COBOL-86 selection of TAB stops is the
closest to any kind of standard. Some Editors provide for adjustable
TABS but you must determine if the COBOL compiler will read the
Editor's symbols by trial and error. | do not use TABS because | want
my CODE to be portable!

REMark * June * 1984

59



7. If you are now using COBOL-80 and you wish to change to
COBOL-86, you must be aware of the TAB stops we have just
discussed. However, you MUST be aware of a “DISTURBING"
change (This really upsets me!). COBOL-86 has changed COMPU-
TATIONAL USAGE (COMP) to COMPUTATIONAL-0 (COMP-0)!
Now, this is a step backwards! COMP-0 is not in the ANSI-74
Standard! This means that all references to COMPUTATIONAL
(COMP) must be changed to COMPUTATIONAL-0 (COMP-0) to
work with COBOL-86. Even worse, if you program with COBOL-86
and wish to have your program portable with 99% of the COBOL
Compilers | know about, all the COMP-0s in the program must be
changed to COMP! As you can surely tell, | am not happy with this. |
hope that the ones who made this decision have a GOOD
REASONI1!

8. While | am dealing with negatives about COBOL-86, | must
object to the sample programs included with the package! Don’t get
me wrong, | believe in example programs to help the user to under-
stand the software, but they should be prepared in up-to-date struc-
tured COBOL. The main objection is the use of 77-levels. The
77-levels are going to be eliminated in the next ANSI COBOL
standard. | am also put out that the file format was changed between
versions 4.01 and 4.06 of COBOL-80 without notice and without
giving the users a chance to update! This is really serious to pro-
grammers that have thousands of lines of COBOL code that they now
want to convert to COBOL-86.

9. Another change between COBOL-80 and COBOL-86 is the sub-
ject of Error Messages. Here, | am not negative. | think that the
COBOL-86, Appendix E does an excellent job of listing the error
messages that you can encounter while compiling and executing a
COBOL program. The explanations are brief but to the point. Thisisa
big improvement over COBOL-80.

10. The COBOL-86 Manual is the really big improvement!!! The
index could be improved and additional examples of the use of
COBOL verbs would make the manual better. However, | would
accept it as a big step in the right direction as compared with a lot of
software manuals.

11. I have kept my major complaint about COBOL-86 for the last.
COBOL-80 did not include an internal SORT verb, but you could
purchase the M/SORT software from Microsoft separately. It did a
good job. COBOL-86 does not say one word about the COBOL
SORT verb in the manual. This is a serious omission! | have no
objection to it being optional, but it should be available. There are
many, many COBOL programs requiring the SORT verb. | discussed
this with the manager of my local Heathkit store. He checked into
this problem and advised me that my objection was not the first,
Microsoft is working on the problem and hopefully will have a SORT
utility software package on the market in the next few months. | hope
that this is true!

COBOL-86 Software

COBOL-86 comes with two (2) 40 track soft-sector distribution disks.
They are organized as follows:

| - Disk | has the compiler and run-time systems:

A) COBOL.COM - Main compiler program.

B) COBOL1.OVR - Overlay 1.

C) COBOL2.OVR - Overlay 2.

D) COBOL3.OVR - Overlay 3.

E) COBOL4.OVR - Overlay 4.

F) COBOL1.LIB - Run-time library of optional routines.

G) COBOL2.LIB - Run-time library of routines required to load
COBRUN.EXE.

H) COBRUN.EXE - Common run-time executor.
1) COBDBG.OB]J - Interactive Debug Facility.
J) REBUILD.EXE - Utility for recovering damaged indexed files.

Il - Disk Il has the test and demonstration programs:

A) CTEST.COB -- Test program for color display systems.

B) CTEST.EVE - Executable version of CTEST.COB.

C) CRTEST.COB - Test program for terminal interface module.
D) CRTEST.EXE - Executable version of CRTEST.COB.

E) CENTER.COB - Test program for compiler and runtime system.
F) CENTER.EXE - Executable version of CENTER.COB.

G) DEMO.COB - Program to demonstrate the screen section, to
CALL subprogram BUILD, and CHAIN to program UPDATE.

H) DEMO_01.0VL - Overlay file generated by linking DEMO.
1) DEMO.EXE - Executable version of DEMO already linked to
BUILD.

J) BUILD.COB - Subprogram to create am indexed (ISAM) file of
names, addresses, and telephone numbers.

K) UPDATE.COB - Program to list or update the ISAM file created
by BUILD.

L) UPDATE.EXE - Executable version of UPDATE.

M) README.DOC - Contains current release information.

Note: If you will either Print or Type the README.DOC file on your
COBOL-86 Distribution Disk you will find that Heath/Zenith has
provided five (5) additional example programs. These additional
programs demonstrate, by example, the different type of file organi-
zations that are supported by COBOL-86 System. They are described
below:

EX-11.COB Index file demo program.
EX-R1.COB Relative file demo program.
EX-51.COB Sequential file demo program.
EX-L1.COB Line sequential demo program.
EX-P1.COB Demo program that generates

printer output.

You will not understand these programs at this time unless you are
experienced with COBOL. Do not worry, we will explore all of these
in future COBOL Corner articles (In my mind, they are not good
examples!).

Even though | have expressed some negative thoughts about
COBOL- 86, | would still highly recommend COBOL-86 for use with
the H/Z- 100. It is an ideal software program for the H/Z-100
because COBOL programs use a lot of RAM and a lot of disk storage.
The 16-bit 8088 side of the H/Z-100 provides this memory and disk
storage.

Major COBOL-86 Process Steps

There are three (3) major steps required to compile and execute a
COBOL-86 program:

1 -- Compiling. The COBOL-86 compiler consists of the main
module (COBOL.COM) and four overlays (COBOL1.OVR thru
COBOL4.0OVR). The routines contained in the compiler analyze the
COBOL program and produce the object code file with the filename
extension (.OBJ). The compilation requires two passes. The first pass
creates the Intermediate Version of the program that is stored in a
binary work file called COBIBF, TMP. The second pass then creates
the object code and then erases the work file.

2 -- Linking. The Object Linker produces the machine executable
code from the object code which is placed in a file with the extension
(.EXE). The Object Linker (LINKER) performs the following tasks:

a) Combines separately-produced object code files, if any.

60

REMark +* June = 1984


http:COBOL.COM
http:COBOL.COM

b) Searches the library files for definitions of unresolved external
references.

¢) Resolves external cross-references.

d) Produces a printable listing of symbols.

3 -- Loading and Executing. The run-time system (COBRUN.EXE) is
loaded and executes the executable program.

Disk Backup

Before you start using COBOL-86, you MUST make working copies
of your two original MASTER DISKS that came with the system! To
perform this backup you must know how to use Format, Configur,
and Copy utilities that are supplied with the Z-DOS Operating
System. (If you have not made backup copies of the Z-DOS disks, this
should be done first! Refer to your Z-DOS Manual for instructions.) |
am going to assume that you know the Z-DOS system. If not, this
should be done first!

The backup copies of COBOL-86 should include the ““operating
system files'” and the necessary COBOL files. To do this, follow these
steps:

1. Place Z-DOS Disk | in drive A and a blank DSDD (double-sided,
double-density) soft-sector disk in drive B.

2. Enter by keyboard, FORMAT B:/S/V

3. When (2) is complete, enter COPY LINK.EXE B:

4. When (3) is complete, replace the Z-DOS disk in drive A with
COBOL-86 Distribution Disk I.

5. Enter by keyboard, COPY *.* B:

6. When (5) is complete, the disk in drive B will contain a bootable
COBOL-86 system.

7. Remove your working COBOL-86 Disk from drive B and label it
“COBOL-86 SYSTEM DISK-A".

8. Now mount this disk in drive A and use the CONFIGUR utility
and prepare the system to match your printer.

Now, you can create a bootable disk using another blank disk,
following the above procedures. Skip step 3, and substitute the
COBOL-86 Distribution Disk Il in step 4. Also, using a similar
procedure copy your Editor that you will use to code your source
program to this disk. When complete, label this disk “COBOL-86
Program Disk-B".

Verify COBOL-86 Working Disks

We now want to verify our working disks that we made above. We
will do that by compiling, linking, and executing the test program
“CENTER.COB".

1. Put your COBOL-86 System Disk in drive A and the COBOL-86
Program Disk in drive B.
2. Use “DIR” to check the directory for the following files:

Program Disk System Disk
“EDITOR"”.COM (YOUR CHOICE) COBOL.COM
CTEST.COB COBOL1.0OVR
CRTEST.COB COBOL2.OVR
CENTER.COB COBOL3.0VR
DEMO.COB COBOL4.0OVR
BUILD.COB COBDBG.OBJ
UPDATE.COB LINK.EXE

Plus Z-DOS utility & boot COBOL1.LIB
files you will need. Erase COBOL2.LIB
all other Z-DOS & COBOL-86 COBRUN.EXE
files. REBUILD.EXE

Plus Z-DOS utility & boot

files you will need. Erase
all others.

You can see that COBOL-86 will require two working disks. The
COBOL-86 System Disk will always be in drive A and the COBOL-
86 Program Disk will be in drive B. This arrangement will simplify
access to the program files and will always place them on the same
disk. (For you readers using the 8 inch disks or the Winchester drive, |
am going to assume that you have the experience to know how to set
up your system.)

Test Program “CENTER.COB”
Let's try a test run! Please follow this procedure:

1. Boot the system and select B as the default drive by typing B: and
return.

2. Compile CENTER.COB so that an object file named CENTER.OB]
is produced by typing one of the following commands after the drive
prompt B:.

A:COBOL CENTER; <CR> PRODUCE ONLY OBJECT FILE

or

PRODUCE OBJECT FILE & PRINT
PROGRAM LISTING

A:COBOL CENTER, ,PRN <CR>

or

PRODUCE OBJECT FILE & LIST
FILE (CENTER.LST)

A:COBOL CENTER, ,CENTER <CR>

or

A:COBOL CENTER,,: <CR> SAME AS PREVIOUS EXAMFLE

or

A:COBOL CENTER, ,CON <CR> PRODUCE OBJECT FILE &

DISPLAY LISTING ON TERMINAL

When compilation is successfully completed, the message -- NO
ERRORS OR WARNINGS -- isdisplayed, and the compiler exits to
the operating system. This confirms the compiler. The files CEN-
TER.OBJ and CENTER.LST (if you specified one) will be saved on the
Program Disk in drive B. Practice the various commands.

3. Now, we will Link the program, CENTER, with the following
command typed after the drive prompt B:

A:LINK,..A:; <CR>

This command links the objectfile with the run-time system, produc-
ing the executable file. The A: at the end of the command tells the
linker to look on drive A for the COBOL Libraries (.LIB). The execut-
able file (CENTER.EXE) will be saved on the Program Disk in drive B.
If you type DIR, you should now find the following files:

CENTER.COB

CENTER.OB|

CENTER.EXE

CENTER.LST (if you specified it in step 2)

4. Next, we will load and execute the CENTER program by typing
the following command after the drive prompt B:

CENTER <CR>

This command will cause the system to search the B drive and then
the A drive for COBRUN.EXE. COBRUN.EXE and CENTER.EXE will
be loaded and CENTER will be executed. If no ERRORS are dis-
played, you have confirmed the Linker and the Run-time Executor.

REMark * June = 1984

61


http:CENTER.OB
http:CENTER.oB
http:COBDBG.OB
http:COBOL.COM
http:EDITOR".COM

5. CENTER is a simple COBOL program that does not use the
sophisticated screen handling features of COBOL-86. It will prompt
you for an input line of text. CENTER takes that text and centers it or
aligns it with the left or right margin.

6. You should now know how to compile, link, and load/execute a
COBOL-86 program. Before we try another sample program, we
should review the three (3) steps in more detail.

COBOL-86 Compiler Operation Methods

Again, we will put the COBOL-86 System Disk in drive A and the
COBOL-86 Program Disk in drive B. We will also select drive B as
the default drive. The compiler can be operated in more than one
way:

1. Response Method

2. Command String Method

3. Partial Command String Method

4. Command String With Switches Method

One Response Method:

Type—-— A:COBOL (type) <CR>
Response—-source filename[.COB]: (type) CENTER
Response—object filename[CENTER.OBJ]: (type) <CR>
Response—source listing[NUL.LST]: (type) CENTER

This will produce the object file, CENTER.OBJ, and a listing file,
CENTER.LST, on the disk in drive B.

One Command Method:

Type—————A:COBOL command string
where the command string contains:

source filename, object filename, source listing

The separator character is the comma and no spaces are allowed
before comma. Filename is defined as follows:

device filename extension

where “device’ is the name of a system device; such as, disk drive,
terminal, or printer. If device is a disk drive, the filename must be
given, unless a default filename is available (more on this under
Partial Command Strings). If device is not a disk drive, only a device
name is required. The device may be followed by a colon for
readability (the colon is required for disk drives). COBOL-86 will
recognize the following devices:

NUL Do not create a file.

CON Display on terminal.

A:or B:  Disk drive (colon required).
PRN Printer.

AUX RS-232 item.

Where “filename’ is the name of the file on disk. If filename is
specified without a device, the default disk drive is assumed as the
device. Maximum length of the filename is 8 characters, where the
“extension” is a period followed by a three-character suffix to the
filename. If an extension is not specified, the following defaults are
assumed:

.COB for the source program file
.OB] for the object file
.LST for the list file

| believe an example will best make all this a lot clearer! For exam-
ple, type the following command string after the B drive prompt:

A:COBOL CENTER,CENTOBJ,CON <CR>

The source program, CENTER.COB, on drive B will be compiled, the
object file, CENTOBJ.OBJ, will be saved on the disk in drive B, and
the list file will be displayed on the terminal. No listfile, CENTER.LST
will be saved in this example.

Partial Command String Method:

Now, note that the default object filename can be specified by
entering only the comma that normally follows the filename. Also
note that if a comma is entered following the object filename, the
source listing filename defaults to the source filename. If you fail to
specify one of the filenames, you will be prompted for it. Also, if you
enter an incomplete command string followed by a semicolon,
default entries will be assumed for any unspecified files. An example
will best explain the Partial Command String. Type the following
after the B drive prompt:

A:COBOL CENTER,,; <CR>

The source program, CENTER.COB, on disk B will be compiled and
the object file, CENTER.OBJ, and the list file, CENTER.LST, will both
be saved on disk B. (The second comma tells the compiler to use the
source filename as the default list filename.)

Command String With Switches:

One or more switches can be added to the compiler command
string. A slash (/) indicates a switch to the compiler. The syntax for a
command string with switch(es) is:

drive:COBOL command string/switch{es)
The possible switches are:

1) /C, the compiler will look for the (4) overlay files (COBOLI.
OVR-COBOL4.OVR) on the default drive and then on drive A. This
switch overrides the default drive. (No colon should be used.)

Example: A:COBOL CENTER,,/CB
Now, the compiler will look for the overlay files on drive B.

2) /T, the compiler puts its intermediate file, COBIBF.TMP, on the
default drive. If /T is used followed by the desired drive, the inter-
mediate file will be put on the specified drive. This switch is helpful
for compiling large programs on systems with both 5 and 8 inch
drives (two each).

Example: A:COBOL CENTER,,/TC
Now, the intermediate file will be put on drive C.

3) /P, each /P allocates an extra 100 bytes of stack space for the

compilers use. If a stack overflow error occurs during compilation,
use /P.

Example: A:COBOL CENTER/P/P/P;

This will allocate 300 extra bytes. Note: No commas, but the semico-
lon, to show the other default method,

4) /D, this switch suppresses both the generation of the Debug
Intermediate File (.DBG) and the source line numbers. Thus, the
Procedure Division code is about 16% smaller. This can be impor-
tant when working with a large program. However, the system will
not be able to note the line number at which an error occurs!

Example: A:COBOL CENTER,./D
5) /Fn, this switch is too complicated to discuss at this time.

Note: There is a “‘short-cut” way to check the program with a
“‘quick” compilation.

Example: A:COBOL CENTER,NUL;

62

REMark = June « 1984


http:CENTER.OB
http:CENTER.OB

This command will compile CENTER.COB and display a list of errors
on the terminal. After the errors are corrected, use one of the other
methods of compilation. This is for experienced COBOL program-
mers that do not require any other error finding procedures.

Also: The way to learn the above methods and to decide the way you
want to compile your programs is to practice all of the methods over
and over so that you can make a wise decision.

COBOL-86 Linking Methods

Keep the COBOL-86 System Disk in drive A and the COBOL-86
Program Disk in drive B, which is selected as the default drive. The
Linker converts the compiled object file into an executable file. It
does this by searching the COBOL-86 run-time libraries,
COBOL1.LIB and COBOL2.LIB, which are part of the run-time
system. COBOL1.LIB has the optional routines that may be required
for running your program. COBOL2.LIB contains the routines that
are ALWAYS necessary for running your program. The necessary
routines are then linked to the object file. The Linker also links
separately compiled program modules you may have into the object
file. To operate the Linker, use one of the following procedures:

1. Specify files interactively. Enter at keyboard after the B prompt:
A:LINK <CR>

Remember the A: is necessary because the LINK file is not on the
Program Disk in drive B. Now, reply to the following prompts:

A) Object Modules [.OBJ]:

Enter the name of the object file (CENTER). You do not need an
extension (.OBJ" will be supplied). If you had multiple object files
to be linked, they must be added here separated by a plus (+).
Remember! The files to be linked MUST be OBJECT FILES!

B) Run File [object filename.EXE]:
Name the file to contain executable code (CENTER).

C) List File [NUL.MAPJ:

Name of list file. Defaults work about the same as with the compiler.
The default is no listfile, unless the Run File is followed by a comma,
then the default list file is the object filename with the extension
(.MAP).

D) Libraries [.LIB]:

“Libraries’ refers to the run-time routines that COBOL-86 may need
to run the program. Normally press RETURN following this prompt.
A special case would be where the programmer wishes to specify
another library.

2. UseaCommand String. Enter atthe keyboard after the B prompt:

A:LINK command string
where the command string contains

objectfile,runfile,listfile,libfile

as defined above.

The object filename MUST be specified! For the other files, a default
filename can be named by entering the comma that would normally
follow the filename.

Examples:

A) A:LINK CENTER;

This command string links CENTER.OBJ and puts the run file into
CENTER.EXE. The Linker will prompt for the drive on which
COBOL1.LIBand COBOL2.LIB are to be found. Type A: in response.

B) A:LINK CENTER,, A:;

This command operates the same as (A), except that a listing, CEN-
TER.MAP, is produced. The second comma indicates that the object
filename will be used as the default list filename. The A: at the end of
the command line tells the Linker that the COBOL-86 Libraries are
on drive A.

C) Wewill not review some of the more complicated methods at this
time.

Executing COBOL-86 Programs

After the COBOL program has been compiled and linked success-
fully, the final step is Loading and Execution! These functions are
performed by specifying the name of the executable file to the
system. The run-time executor (COBRUN.EXE) is loaded automati-
cally at the start of execution. To run the program, enter the name of
the run-file, without the extension (.EXE).

Example: CENTER <Cr>
Execution of CENTER.EXE will start immediately.
CRTEST.COB Test Program

Now for practice you compile, link, and execute CRTEST.COB with
the method that you have decided you are going to use. You can use
the method that we used for CENTER.COB above. | will not review
this. It is done exactly the same way! CRTEST is a test program to
check the terminal interface. When it is executed, CRTEST will
prompt for input. Just follow instructions.

COBOL-86 Demonstration System

The COBOL-86 Demonstration System consists of three (3) COBOL
programs:

DEMO.COB
BUILD.COB
UPDATE.COB

We will use these programs for additional practice. You do not need
to understand these programs at this time but COBOL Corner will
cover the subjects down the road. DEMO is the executive program of
the system. It asks if you would like a demonstration of the COBOL-
86 Screen Section, or whether you would like to create or update an
indexed (ISAM) file of name, addresses, and phone numbers. This
system will provide you with a chance to compile, link, and execute
a fairly complicated program. We will still keep our COBOL-86
System Disk in drive A and the COBOL-86 Program Disk in drive B.
(This might be a good time to back-up these two disks! Do you know
how? If not, look it up in your Z- DOS Manual.) Make drive B the
default drive by typing B: and RETURN.

1. Type from the keyboard:
A:COBOL DEMO, , CON;
This compiles DEMO.COB and produces DEMO.OBJ. The use of
CON directs the compiler listing to be displayed on the terminal
screen allowing you to watch the compilation. The message -- NO

ERRORS OR WARNINGS -- should be displayed on the screen at
the end of the compilation,

<CR>

2. Next type:

A:COBOL BUILD,,CON;

This will compile BUILD.COB and produce BUILD.OB].

<CR>

3. When the above compilation process is finished, type:

A:COBOL UPDATE, ,CON; <CR>

REMark + June « 1984

63



This time UPDATE.COB will be compiled and UPDATE.OB] will be
produced.

4. When you have finished the above compilations, type:
DIR *.0BJ <CR>

The directory listing should display the following files:

DEMO.OB)
BUILD.OB])
UPDATE.OBJ

5. Link DEMO.OBJ and BUILD.OB] together by typing:
A:LINK DEMO+BUILD,..A:: <CR>

This will produce DEMOO01.0OVL in addition to DEMO.EXE.
6. Link UPDATE.OBJ by typing:

A:LINK UPDATE,, ,A:: <CR>

This will produce UPDATE.EXE.
7. Now we will type:

DEMO <CR>

When DEMO has been loaded, it will prompt for input by providing
Menus and Information Screens to guide you through the demonstra-
tion. Do not worry that you do not understand the program at this
time. We will take care of that in due time in our COBOL Corner
articles,

Program Development

To write a COBOL-86 program, you will again have the two disks in
the same drives that we have been using. Also, select drive B as the
default drive by typing B: and return. Now, type the the following
command after the B prompt:

EDLIN PRGMO1.COB

if you are using EDLIN as your Editor, or else your Editor’s name in
place of EDLIN. You are now ready to enter the first COBOL Corner
program. When you have finished writing the program, use EDLIN E
command, or your Editor's command, to save the file,
PRGMO01.COB, on the COBOL-86 Program Disk and then exit to the
Z- DOS operating system. Now, as we have described above, com-
pile, link, and execute PRGMO1!

Closing

As you can see, COBOL-86 is very similar to COBOL-80, but you
must learn the few different commands. A little practice will make it
all seem easy. So, we will look for you to join COBOL Corner! Please
order the HUG COBOL Corner Disk-1(Z) in place of the HUG
COBOL Disk-1!

If you have any questions, suggestions or arguments, send them to
me in complete written form along with a stamped, self-addressed

business size envelope. We will get a discussion going!
-

H/Z89 PERIPHERALS from SECURED COMPUTER SYSTEMS

PORT SERIAL

2 CARD—— 1/0
/3 PORT PARALLEL

‘. .. not your typical vanilla-flavored serial
and parallel interface ... "

Features:

Chip independent design ® Reduces computer data buss loading from
3 to 1 * Choice of Centronics or Epson parallel drivers for HDOS
or CP/M = Complete documentation and installation instruction.

s 2 Serial Ports all models of H/Z 88, 89,

¢ Supports: Ring Input, 90 using CP/M or HDOS.
External Clock, Auto Dialer ¢ Fully tested, 90 day warranty,

¢ 3 Port Parallel with 2 two serial cables and a parallel cable
Level Interrupt Control (internal to computer) and software

® Fully compatible with driver.

PRICE $199.00

16K RAM EXPANSION CARD

Expands your H/Z89 RAM Memory
capacity to a FULL 64K!

Fully compatible with:

H/Z 89 » H/Z 88 » Magnolia Microsystems
CP/M and disk drive /O interface cards

NOW INCLUDING SUPPORT MOUNTING BRACKET
Featuring:

Complete installation instruction * 90 day Warranty

Field reliability record now entering its 21st month

Now Only $65.00

HDOS is a registered trademark of Heath Company Shipping &
Shipping & Handling $10.00 CPIM is a registered trademark of Digital Research Handling $5.00
PRICES ARE LESS SHIPPING AND TAX IF RESIDENT OF CALIFORNIA
MAIL ORDER: 12011 ACLARE, CERRITOS, CA 90701 (213) 924-6741 w
TECHNICAL INFO/HELP: data systems
8575 KNOTT AVE., SUITE D, BUENA PARK, CA 90620 (714) 952-3930 SERVICE CENTER

Terms and specifications subject to change without notice.

REMark = June = 1984



Keyboard Dialing

Introduction

After reading Mr. Walt Jung’s modem tutorials in REMark Issue #40,
42, and 45, most of the questions | had about modems and modem
software were answered. After Issue #42 | purchased a small inex-
pensive modem. This article is about that modem and others like it. |
benefited greatly from Mr. Jung’s articles, and | would like to share
some discoveries | found and expanded upon concerning the
modem | purchased.

The appropriate title for this article should be “Keyboard Dialing A
Non-Smart Modem”’. | purchased the modem to take advantage of
the after hours use of a Vax 11/780, RCPM and BBS systems. | really
wanted a smart modem at 1200 baud, but my wallet said no long
before my wife did. So | settled for the cheapest modem that had the
most features. | reviewed several modem ads and then decided on
the Novation J-CAT, who's features included (1) auto-search, (2)
auto-answer, (3) self test diagnostics, (4) audio beeper, (5) LED
indicators, (6) keyboard connect mode, (7) break key and EIA-
RS232C/TTL Compatible serial interface. The unit sold for $124.00
in July of ’83, and now selling for $90.00 at some discount stores.

While reading the owners manual | found an unadvertised feature,
the J-CAT had the hardware capability to pulse dial a phone line.
Requirements to take advantage of this feature are hardware interfac-
ing with your Heath computer, and writing a program to execute the
dialing. | viewed this as a challenge, to have an inexpensive modem
with Smart modem-like capabilities. This article concerns the results
of my efforts to interface the H-89 to the J-CAT for pulse dialing from
the keyboard. For the sake of space, | will skip the problems I
encountered for whatever reason, and just explain exactly what is
needed to accomplish the keyboard dialing with the ]-CAT.

Hardware Requirements

The J-CAT modem comes with a male RS-232 cable which must be
changed to a female RS-232 to interface with port 330 on the H-89.
Just remove the wires from the male connector and solder them to the
same pin numbers on the female connector, they are correct for
modem communication. The next two iines are used for pulse dial-
ing and they are not connected from the factory. They are PLS and
OHK, the OHK line will connect to pin 4 of the female RS-232, and
the PLS line will connect to pin 5 of the RS- 232. See Figure 1 for the
signal names and numbers on the |- CAT, H-89 and the RS-232
connector. Also make sure that pin 6 and 8 are jumpered together at
the RS-232 connector.

Signal Requirements

The keyboard dialing interface requires a single output bit to execute
the dialing, and if you wish to detect a dial tone before dialing, then
you will need an input bit. | used pin 4 (RTS) of port 330 for the output
bit, and pin 5 (CTS) of port 330 for the input bit. The J-CAT owners
Manual has an excellent explanation on what's needed for the
interfacing, but for the H- 89 owners | have just outlined all that is
needed for the hardware interfacing to the J]-CAT. This outline can
also be applied to the SIGNALMAN MARK VIl modem with some
minor differences.

John H. King
710 Meadowridge Dr.
Warner Robins, GA

Software

| am submitting the MBASIC program | wrote to implement the
keyboard dialing (KEYDIAL.BAS). The J-CAT owners manual ex-
plains some basic guidelines needed for writing your program. | will
use the steps from those guidelines, and the blocks from the simple
block method | used in my MBASIC auto-dial program to show how |
accomplished the software requirements. Throughout this software
explanation | will cross reference between guideline steps and pro-
gram blocks. The blocks are shown in Listing 1.

Step 1. [ reset modem before using ] Procedure: set OHK low (0) for
25 msec, high (1) for 20 msec and then back to (0). Step 1 is
implemented in block 16 of the MBASIC program,

Step 2. [ setup the off hook condition ] Procedure: set OHK high (1).
See block 18.

Step 3. [ wait for dial tone ] Procedure: check that PLS pin 5 stays
high (1) for one second. See block 19,

Step 4. [ pulse OHK to dial number, according to the specification
below ]

Pulse duration: 60 msec on-hook (OHK=0)
Pulse interval: 40 msec off-hook (OHK=1)
Digit interval: 700 msec off-hook (OHK=1)
Digit 1to 9 : 1 to 9 pulses

Digit 0 : 10 pulses

See block 21.

Step 5. [ leave line in off-hook condition after dialing ] Procedure:
set OHK high (1). See block 21.

Step 6. [ wait for J-CAT to lock on to remote modem then go to data
mode ] See block 7.

Step 7. [ terminate call ] Procedure: repeat step 1. See block 16.

Step B. [ re-dial a number ] See block 9.

The remaining blocks are for screen delays, menu, error traps, and
error messages. The program is easy to follow and | will explain how
it works from top to bottom.

The program starts by displaying a menu, from the menu you have
four choices. Capitals or lower case letters will work as valid inputs
to the menu prompt. Select D, R, T, and G, selection D will except
digits 1 thru 9, zero and spaces as valid numbers. Anything else will
cause an error. R will re-dial last number dialed. T will reset modem
or terminate call. And G will exit the auto-dial program and return to
the CP/M A> prompt. The J- CAT modem requires a reseton startup,
so T should be the first selection each time you run the program.

After entering the phone number, the program will check for dial
tone. If tone is present, the number will be dialed. The program will
check for carrier tone next. If no carrier detection in 10 sec., the
program will return to menu. If a carrier tone is detected, then
program will exit to CP/M.

REMark * June = 1984

65



Special Notes

Once you return to CP/M through carrier tone detection or through
selection G, type in the name of your communication program. | am
presently using MODEM7, which should be on the current disk with
KEYDIAL.BAS. It will be loaded and executed. At that point you can
begin communication with the remote computer. This procedure
works OK with some remote systems but proved to be too slow for
the VAX 11/780, the Telenet link, and the Tymnet link. The long
delay after making contact with the remote system is just long
enough to be rejected. The message you get reads ‘‘Timed out in log
in procedure’’.

To solve this problem | decided to compile the MBASIC program,
then use it in a Submit file under CP/M. This would eliminate the
long delay of typing in the program name. The Submit file would
respond like a batch process, and execute like one big self contained
program, eliminating the need to use MBASIC altogether. | also
wrote and compiled a two line routine that resets or disconnects the
phone line when communication is terminated. See Listing 2 for the
Submit file, and Listing 4 for the two line disconnect program.

Compiling Notes

When compiling the MBASIC program, all of the for/next loop
terminal values must be increased because the compiler runs faster
than MBASIC. If not changed, the program will pulse dial too fast,
and the screen delays are not long enough to read the error messages
displayed on the screen. The program lines that should be changed
are 800, 890, 900, 1080, 1120, 1200, and 1220. You can use an
oscilloscope or the trial and error method to find the correct value. |
will not try and list what the values should be because there are too
many Heath/Zenith micro computers running at different clock
rates, and this program should work with all of them.

1 do not own a good oscilloscope, so my for/next loops are ball park
figures. Those who do can be more exact according to the J-CAT
modem specification. | experimented with slow and fast dialing that
worked. | then chose a value at the center of those two limits.

As mentioned earlier, this program will also work with the SIGNAL-
MAN MARK VII with minor changes, which centers around what
signal level and duration is needed for resetting and pulse dialing the
SIGNALMAN MARK VII. | will list the lines of the MBASIC program
that should be changed for keyboard dialing the MARK VII. See
Listing 3.

Note: In the MBASIC program, port 330 address is decimal 216.

I hope that others can make use of this program for pulse dialing. And
I would like to thank Pete George of MGHUG for his input and for
modifying and testing this program on the SIGNALMAN MARK VII.

Figure 1

H-89 FEMALE J-CAT
PORT 330 RS-232 CONNECTOR
| 21 > 2 | >| 2 TXD |
13 1< I3 I< | 3 RXD |
1 41 > 4 | >| 7 OHK |
15 I< I 5 I< | 6 PLS |
171 17 i 1 GND |
| 6 I< | 6 I—1 il |
| 8 I< | B l<—I | 4 CAR |

Listing 1 (BLOCKS)
Block 1. This block formats the screen with program name.

Block 2. The menu is displayed in this block.

Block 3. This block will display the input prompt.

Block 4. Block 4 validates entries. If entry is not D, R, T, or G, the
program will exit to block 5. If true it will jump to block 6.

Block 5. This block will sound console bell and display an error
message, then return to beginning of program.

Block 6. If input is equal to G then go to block 7.

Block 7. This block will exit from keyboard dial program back to
CP/M.

Block 8. If input is equal to T then jump to block 16.

Block 9. If input is equal to R then go to block 10, if not R then go to
block 12.

Block 10. This block checks for previous number dialed. If no
number was previously dialed, then exit to block 11. If there is a
previous number, then jump to block 15.

Block 11. Thisblock will display an error message, then return to the
beginning of prégram.

Block 12a. Your selection has been logically deduced to D, the
program will output a message concerning phone number format.

Block 12b. Will give prompt message for inputting number to be
dialed.

Block 13, 14, & 15. Will check number to see if it is a valid number,
if not then error message. If valid, then go to block 16.

Block 16. Reset modem for selections D, R, and T.
Block 17. If selection was T then return to beginning. If notthen 18.

Block 18, 19, & 20. Read input port, check for dial tone. If no dial
tone then give error message. If tone is present then go to 21a.

Block 21a. This block will display each number before dialing.
Block 21b. This block will dial phone number.

Block 21c. This block will check for carrier tone. If carrier not

present in (10 sec.) then return to menu. Tone detection will exit to
CP/M.

Listing 2

File name = DIAL.SUB

File ocontents = $1 KEYDIAL
$2 MODEM7 T TEMP.DAT
$3 DISCON
$4 DIR

Listing 3

Change these lines for the MARK VII:

800, 810, 890, 900, 920, 1080, 1100, and 1120

Listing 4

This program will disconnect phone line by resetting modem.
DISCON.BAS

10 FOR I=1 TO XX:0UT 216+4,0:NEXT I:FOR I=1 TO XX:
OUT 216+4,2:NEXT I:0UT 216+4,0

20 END:SYSTEM

Note: XX must be replaced by actual terminal values before compil-
ing.

66

REMark ¢ June « 1984


http:KEYDIAL.BAS.lt

KEYDIAL.BAS

'
50 '
I
'

200
210
220
230
240

ATERERRTRREEREREERIVERRREERE TRV VDV

KEYBOARD AUTO DIALER FOR NON-SMART MODEMS

WRITTEN BY- J. KING FOR THE HEATH/ZENITH H/Z-89 USING CP/M & MBASIC
PROGRAM CAN BE MODIFIED TO RUN ON ANY HEATH MICRO AT ANY CLOCK RATE

ATEREREATATUTIVEE TRV TRV

' PORT 330 PIN 4 (RTS) = OUTPUT AND PIN 5 (CTS) = INPUT FOR THIS PROGRAM

! 216 IS PORT ADDRESS #

' 1 BLOCK (1) OF FLOW CHART | FORMAT SCREEN

PRINT CHR$(27)+"E"

PRINT CHR$(27)+"q":' TURN OFF REVERSE VIDEO

PRINT TAB(20) " #0essssesssanssnnnunossnnsnnnsnss "

PRINT TAB(22);CHR$(27)+"p";"* KEYBOARD AUTO DIALER #11; CHR$ (27)+"q"
PRINT TAB(20) " ®##sssnvessssnnssnnnhosnnmonnees 0

PRINT:PRINT

et R S i RS B R S S e S T SRR B

' | BLOCK (2) | PRINT MENU

PRINT TAB(26) "D = DIAL A NUMBER":PRINT

PRINT TAB(26) "G = GO TO MODEM PROGRAM "

PRINT

PRINT TAB(26) "R = RE-DIAL LAST NUMBER"

PRINT

PRINT TAB(26) "T = TERMINATE CALL ":PRINT:PRINT

PRINT TAB(21);"LAST NUMBER DIALED —> ";PNUM$

PRINT

e e e e e e e e e e
' | BLOCK (3) | GET CHOICE

INPUT " CHOICE:"; CHOICE$

' | BLOCK (4) (5) | VALIDATE CHOICE/IF NOT GIVE ERROR MESSAGE
 §

C$=CHOICE$

IF C$<>"D"AND C$<>"G"AND C$<>"R"AND C$<>"T"THEN 430 ELSE 490

IF C$<>"d"AND C$<"g"AND C$<>"r"AND C$<>"t"THEN 440 ELSE 490
PRINT CHR$(7)
PRINT TAB(20)"WRONG SELECTION HIT <or> TO CONTINUE"

INPUT " ":Z$:GOTO 170

" | BLOCK (6) |

IF CHOICE$= "G" OR CHOICE$="g" THEN 1260

" | BLOCK (8) I

IF CHOICE$= "T" OR CHOICE$="t" THEN 800

" | BLOCK (9) |

IF CHOICE$= "R" OR CHOICE$="r" THEN 660

' | BLOCK (12a) | PRINT DIALING INFORMATION

PRINT " DIAL A NUMBER FROM (0 TO 9) AND <SPACE BAR>"
PRINT

' | BLOCK (12b) | INPUT PHONE # TO BE DIALED

INPUT " ENTER NUMBER:"; PNUM$

' | BLOCK (10) (11) | VALIDATE NUMBER/IF ZERO PRINT ERROR MESSAGE
IF PNUM$= """ THEN 670 ELSE 710

PRINT CHR$(7);TAB(17);"NO NUMBER OR PREVIOUS NUMBER TO BE DIALED":GOTO 1200

" | BLOCK (13) (14) (15) | VALIDATE NUMBER/IF WRONG GIVE ERROR MESSAGE
FOR I = 1 TO LEN (PNUMS$)

DIGIT$ = MID$ (PNUMS$,I,1)

IF DIGIT$<>" "AND (DIGIT$<"0" OR DIGIT$>"9")THEN 740 ELSE 760

PRINT CHR$(7)

PRINT TAB(22)"NUMBER IS INCORRECTLY FORMATED'":GOTO 1200

NEXT
e
' | BLOCK (16) (17) | RESET MODEM FOR SELECTION T,D AND R

REMark ¢« June 1984

67



790 '
800 FOR I=1 TO 4:0UT 216+4,0:NEXT I:FOR I=1 TO 3:0UT 216+4,2:NEXT I
810 OUT 216+4,0:IF CHOICE$="T" OR CHOICE$="t" THEN 170

820 PR ERFRYEY VSN EFS NV TP Es ARy TS S Y SN S Sl G e SRR N e TR
B30 PRINT " ®#e¢¢ DIALING NUMBER — PLEASE STAND BY ®#en

840 '

860 ' | BLOCK (18) (19) (20) | CHECK FOR DIAL TONE BEFORE DIALING

8eo ' | GIVE ERROR MESSAGE IF NO DIAL TONE

870 ¢

BBD Y = INP(216+8) :' CLEAR DIAL TONE REGISTER

890 FOR I=1 TO 250:NEXT I:FOR Z=1 TO 130:0UT 216+4,2:NEXT 2

€00 FOR J=1 TO 143:IF Y=0 THEN 910 ELSE 920

910 PRINT CHR$(7):TAB(26);"@6@@ NO DIAL TONE @666":GOT0 1200

920 OUT 21644 ,2

930 NEXT J

G T S S R T I I T e AT A e e T e N
980 ' | BLOCK (2ia) | DISPLAY EACH NUMBER BEFORE DIALING IT

860 '

970 NUM$=PNUMS

980 S =10

990 PRINT CHR§(27)+"p" :' TURN ON REVERSE VIDEO

1000 FOR DIGIT = 1 TO LEN (NUMS)

1010 DIGIT§ = MID$ (NUM$,DIGIT,1)

1020 S5 = S+

1030 PRINT CHR$(27);CHR$(B9):CHR$(64); CHR§(62+S);CHR$(27)+"C";DIGITS:
1040 IF DIGIT$ = "O" THEN DIGIT§ = "i0"

1060 '

1060 ' | BLOCK (2ib) | DIAL NUMBER— THEN WAIT FOR CARRIER TONE

1070

1080 FOR PULSE=1 TO VAL(DIGIT$):FOR Y=1 TO 7:0UT 216+4,0:NEXT Y:FOR X= 1 TO §
1080 CREATES THE €OMS LO & 40 MS HI PULES FOR EACH VAL

1100 OUT 216+4,2:NEXT X

1110 NEXT PULSE

1120 FOR U= 1 TO 85:NEXT U:NEXT DIGIT :' CREATE 700MS HI BETWEEN DIGITS
1430 ' T T T T T e T Ty
1140 ' | BLOCK (21c) | CHECK FOR CARRIER TONE

1150 I=0:PRINT CHR§(27)+"q"

1160 I=I+1:IF I=500 THEN 1190 ' IF NO CARRIER IN 10 SEC THEN RESET

1170 F=INP(216+6):Y=F AND 128 ' MASK OUT REC.LINE SIGNAL DETECT

1180 IF Y=128 THEN 1210 ELSE 1160

1190 PRINT CHR$(7);TAB(18B);" [0 NO CARRIER TONE @€6@ i

1200 FOR I=1 TO 2000:NEXT I:GOTO 170

1210 PRINT CHR$(7);TAB(20);" CONNECTION MADE WITH REMOTE MODEM "

1220 FOR I=1 TO 2000:NEXT I

Bl T R R A R T S e R R R T LS m s
1240 ' | BLOCK (7) | EXIT TO MODEM COMMUNICATION PROGRAM

1260 '

1260 PRINT CHR$(27)+"E":SYSTEM:'END OF KEYBOARD DIAL/GO TO MODEMT

About the Author:

]ohn King has 15 years of experience as an electronic technician,

10 years of kit building, all Heathkit, and one year with the H-
89A. He started in the computer hobby about five years ago with
the Radio Shack Model 1 computer. John enjoys learning as much
as he can about hardware and software on any computer system,
especially the H-89A. He is presently employed by the U. S. Air
Force Civil Service as an Electronic Equipment Specialist.

CORRECTION

There is a minor bug in the HUG TYPING program,
P/N 885-3011-37. The counter of correct words and
attached words does add up to more than total word
counter. The bug would be fixed after adding the
following line:

2005 IF K=18 THEN RETURN

68 REMark « June * 1984



(NOTE: This listing is current as of May 1, 1984. If your club is not listed or you are forming a new club and would like to have it
included in our list, please send the proper information to: Heath /Zenith Users” Group, Attn: Nancy Strunk, Hilltop Road, St.

Joseph, MI 49085.)

AK, Eagle River

Alaska HUG

206 E Firweed Ln., Suite 208
Anchorage, AK 99503

907 276-5917 Group Size: 15

Contact Person: Roger Pickels or Ben Sevier
RBBS 9pm-9am Pacific time 907 276-5917

AK, Ft. Greely

COLD HUG

C/O Stan Lockhart P. O. Box 229
APQ Seattle, WA 98733

907 895-3284 Group Size: 4
Contact Person: Stan Lockhart
Meet Bldg. 856 Apt. B Ft. Greeley
Newsletter, willing to exchange

AL, Birmingham

BEARHUG (Birmingham HUG)
C/0 Jack Goertz Rte. 19, Box 248
Birmingham, AL 35244

205 991-5519 Group Size: 20
Contact Person: Jack Goertz
Meeting time and place varies

AL, Huntsville

Huntsville, AL HUG

Rt. 1, Box 427

Lacey's Spring, AL 35754
205 498-2199

Contact Person: Jeff Hamilton

Meet 2nd Thurs. at Intercon Research Corp

Jeff’s work # 205 453-2576

AL, Mobile

MOBHUG Mobile HUG

3636 Linden Lane

Mobile, AL 36608

205 344-5065 Group Size: 21
Contact Person: Bud Hobdy

Meet 3rd Sun. at 2 p.m.

Just starting, new members welcome

AL, Montgomery

HUG/M (HUG of Montgomery, AL)
2948 Willow Lane Drive

Montgomery, AL 36109

205 272-6964 Group Size: 30+

Contact Person: Ronald E. Travis

Meet 1st Tue. at 7 p.m.

Meet Air Force Logistics Management Ctr.
ZBBS 208-284-0938 all day Sat.

AR, Little Rock

Little Rock HUG

C/O David Schade P. O. Box 15478

North Little Rock , AR 72231

501 758-4500 Group Size: 32

Contact Person: David Schade

Meet 2nd Sat. 12:00 noon at AR College of Tech.

AZ, Phoenix

PHUG (Phoenix Heath Users’ Group)
C/0O Will Summers P.O. Box 37783
Phoenix, AZ 85069

Group Size: 75

Contact Person: Will Summers, President
2nd Tues. at 7:00 p.m. at Phoenix HEC
Membership $5 initiation $12/year

REMark = June « 1984

69



AZ, Sierra Vista

HuacHUGa

1964 Viola Dr C/O Gerald King
Sierra Vista, AZ 85635

602 459-2119 Group Size: 25
Contact Person: Gerald King

Meet monthly at homes of members

AZ, Tucson

SUNHUG (Tucson HUG)

7109 E. Broadway

Tucson, AZ 85710

602 325-0096 Group Size: 40
Contact Person: Allan Anderson

Meet even months first Sunday 2:00 p.m. Tucson HEC

Meet odd months first Tues. 7:00

CA, Anaheim

ANAHUG (Anaheim HUG)

330 E. Ball Road

Anaheim, CA 92805

213 330-8118 Group Size: 103
Contact Person: Bob Chamberlain, Sec.
3rd Thursday 7:30 p.m. at HEC

BB 714 774-7860

CA, Campbell

San Jose HUG

2350 S. Bascom Avenue

Campbell, CA 95008

408 377-8472 Group Size: 70

Contact Person: Gerlene York, Sec.

Meet Ist and 3rd Wed. 7:00 p.m, HEC Campbell

CA, El Cerrito

ECHUG (El Cerrito HUG)
6000 Potrero Avenue

El Cerrito, CA 94530
415-236-8870

Contact Person: Alan Biocca
4th Wednesday at HEC

CA, El Monte

ETUG (ET/ETA 3400 Users Group)
11231 Oak Street

El Monte, CA 91731

Group Size: 100

Contact Person: Charles Van Dyke
Newsletter 4 times year

CA, Fresno

FresHUG (Fresno HUG)

4833 East Santa Ana

Fresno, CA 93726
209-291-6258 Group Size: 4
Contact Person: Harlen Collins

CA, Glendora

Southern CA H11 Users Group

430 W. Highland Avenue

Redlands, CA 92373

714-886-4766 Group Size: 40
Contact Person: Dr. M. . DiGirolamo
Meets at 625 E. Palm, Glendora, CA

CA, Los Angeles

Los Angeles HUG

4469 E. Olympic Blvd

Los Angeles, CA 90023

213 248-1580 Group Size: 20
Contact Person: Doug Holser
1st Thursday 7:00 p.m. at HEC
BB 213 749-8442

CA, Los Angeles

LAETUG (Los Angeles ET3400 GP)
2309 S. Flower

Los Angeles, CA 90007

213 749-0261

Contact Person: Gilbert Murillo

Other contact Charlie at 213 443-2237
Contact for meeting time and place

CA, Monterey

SIG/Heath-Zenith

Naval Postgrad Sch. Hobby Computer Club
C/0O Dave Smith

376 Bergin Dr. Apt. F

Monterey, CA 93940

408 373-4202 Group Size: 60

Contact Person: Dave Smith, Pres.

CA, Pomona

Pomona HUG

1555 N. Orange Grove Avenue

Pomona, CA 91767

714 985-5303 Group Size: 110

Contact Person: Herb Friedman, President

Meet 4th Thursday each month at 7:30 p.m. at HEC
BB 714 629-1943

CA, Redding

Redding Heath Users’ Group
22526 Bridlewood Lane

Palo Cedro, CA 96073

916 547-3461 Group Size: 6
Contact Person: Dave Ballard
Meet monthly various locations

CA, Redwood City

BAHUG Bay Area HUG

2001 Middlefield Road
Redwood City, CA 94063
415-365-4915 Group Size: 219
Contact Person: Bob Bance, Sec.
2nd Tuesday 7:00 p.m. at HEC

CA, Riverside

Tri-HUG

5705 Via Sotelo

Riverside, CA 92506
714-683-2929 Group Size: 20
Contact Person: Kenny Adcock

CA. Sacramento

Sacramento Heathkit Users’ Group

1334 Silica Ave. Sp25

Sacramento, CA 95815

916 662-7220 Group Size: 35

Contact Person: Wally Ranch (Librarian)

Meet 2nd Wed. 7:30 p.m. at Sacramento HEC

70

REMark * June « 1984



CA, San Diego

San Diego HUG

12202 Kingford Court

El Cajon, CA 92021

714-561-2540 Group Size: 170

Contact Person: Richard Cobb

1st Wed. 7:00 p.m. at Parkway Jr HS La Mesa

CA, Santa Maria

4168 Glenview Drive

Santa Maria, CA 93455

805 937-6938 Group Size: 18

Contact Person: Raymond S. Isenson

Meet 1st Mon. 7:00 p.m. at Vandenburg Air Force Base

CA, Visalia

Visalia HUG

29924 Road 168

Visalia, CA 93291

209 747-3235 Group Size: 3

Contact Person: Peter Shkabara

Meeting time and place not established yet

CA, Woodland Hills

LUVAHUG

22504 Ventura Blvd.

Woodland Hills, CA 91364

213 883-0531 Group Size: 40
Contact Person: Paul S. Townsend
2nd Thursday 7:00 p.m. at HEC

CO, Colorado Springs

CSHUG (Colorado Springs HUG)
Colorado Springs, CO 80906

303 632-3019 Group Size: 25

Contact Person: Richard Evers

Meet last Thurs. each month 7:00 p.m.
Have 24 hr. BB (303) 634-1158

CO, Denver

DENHUG (Denver HUQ)

PO Box 449 Contract Station 22

Denver, CO 80221

303 426-7404 Group Size: 160

Contact Person: Bob Eson Sec/Treas

BB 303 423-3224 24hrs Support newsltr exchange
Meet 2nd Monday 7:00 p.m. at HEC

CO, Ft. Collins

FT.HUG (Fort HUG)

822 E. County Road 30

Ft. Collins, CO 80525

303 669-4116

Contact Person: Ted Benglen, I
Meet once a month at present

CT, Avon

CONNHUG (Connecticut HUG)

395 W. Main Street

Avon, CT 06001

203 589-3824 Group Size: 50+
Contact Person: Bob Conlon, President
1st Wednesday at 7:00 p.m. at HEC
BB 203 674-8915

CT, Mystic

Mystic ZDS/HUG

11 Allen Street

Mystic, CT 06355

203 536-6953

Contact Person: Larry Moxon

Meet last Thurs 7:00 p.m. at 11 Allen, Mystic, CT

FL, Cocoa Beach

Brevard Heath Users’ Group

680 Java Road

Cocoa Beach, FL 3293

305 783-6352 Group Size: 25

Contact Person: Gene E. Stiliman

Meet last Sun. of each mo. at 7:00 p.m.
Meet at Patrick AFB, Comet Rec. Ctr.

FL, Fort Myers

SWFHUG (Southwest Florida HUG)
P.O. Box 05-37

Tice, FL 33905

813 334-6190 Group Size: 20
Contact Person: Robert Sloat

Meet 2nd & 4th Thurs. 7:30 p.m.
Meet at J. Hamilton Welch Academy

FL, Fort Walton

NWFHUG (NorthWest Florida HUG)

812 Cherokee Road

Eglin AFB, FL 32542

904 651-2108 Group Size: 30

Contact Person: George A Repasy, Pres.
Meetings 2nd Wed. at DATATEC Inc. 7 p.m.

FL, Jacksonville

JUG (Jacksonville Users Group)

8262 Arlington Expressway

Jacksonville, FL 32211

Group Size: 150

Contact Person: Harry Walker

Meet 1st Wed. at 7:00 p.m. at HEC jacksonville
BB 904 725-4995 24 hrs.

FL, Miami

Miami Amateur Computer Club

4705 W. 16th Avenue

Hialeah, FL 33012

305 823-2280 Group Size: 35

Contact Person: Emileo Crespo

Meet 2nd Thurs. each month 7:00 p.m. at HEC
BB (305) 823-2281

FL, Orlando

HUG of Central FL Computer Sc.
121 Talmeda Trail

Maitland, FL 32751

305 644-6848 Group Size: 11
Contact Person: Joseph Walker, Pres.
4th Wednesday at various locations

REMark * june * 1984

71



FL, Pensacola

221 E. Government

Pensacola, FL 32501

Contact Person: John Causey

Meet 2nd Tue. each month 7:00 p.m. at above address
Meet at Professional Business Sys.

FL, Plantation

PHUG Plantation HUG

7173 W. Broward Blvd.

Plantation, FL 33317

305 791-7300 Group Size: 20
Contact Person: Paul Price

Meet 2nd Tues. 7-9 p.m. at HEC

BB 305 791-7302 24 hrs. on H/Z100

FL, Tallahassee

Tally HUG

C/O TACS P.O. Box 6716
Tallahassee, FL 32314

904 562-1412 Group Size: 14
Contact Person: Bill Hill

Meet 1st Tues. each month 7:30
Meet at Alternative Microcomputing

FL, Tampa

Al Lynch HUG

415 Shore Crest Drive

Tampa, FL 33609

813 253-0093 Group Size: 65

Contact Person: H. Glenn Tanner, Sec.

Meet 1st and 3rd Wed. 7:30 p.m. at Tampa HEC
Dues: $10.00 year

GA, Atlanta

HUG-CA (Georgia HUG)

2775 NE Expressway Apt. 0-3
Atlanta, GA 30345

404 325-8781 Group Size: 30
Contact Person: James Affuso

Meet 2nd Thurs. at 7:00 5.m. at HEC
BB 404 252-4345 24 hrs.

GA, Warner Robins

MGCH /ZUG Middle Georgia H/ZUG

P.O. Box 92

Warner Robins, GA 31099

912 922-6470 Group Size: 30

Contact Person: Garth K. Haygood

Meet 3rd Tues. at Nola Brantley Public Library
Forming local CP/M Users’ Group

Ga, Augusta

CSRA Computer Club

P. O. Box 284

Augusta, GA 30903

803 648-3603 Group Size: 10
Contact Person: Dave Howard
Meet 4th Wed., location rotates
BB 803 279-5392

Hilo, HI 96720

808 959-8985 Group Size: 10

Contact Person: R.A. Curtis

Meet 1st Thurs. 7:00 p.m. at HELCO Conference Room
BB 808 9614818

HI, Honolulu

HUGH (HUG Hawaii)

1255 Nuuanu Avenue #1405

Honolulu, HI 96817

808 531-8843 Group Size: 87

Contact Person: Jim Branchaud, Pres.

Meet 3rd Wed. 7:00 p.m. at Pearl City HEC
BB 808 487-8755

IA, Des Moines

DMA HUG (Des Moines Area HUQ)
10275 NE 23rd Avenue

Mitchellville, |A 50169

515 266-2382 Group Size: 21

Contact Person: Harold Dykens

Meet third Mon. each month 7:00 p.m.

IL, Champaign

CCCC (Champaign Cty Comp Club)

C/0O James Bartlett, J.r 2109 Branch Rd
Champaign, IL 61821

217 398-5956 Group Size: 110

Contact Person: James Bartlett Jr., Pres.

Meet 1st Wed. 7:30 p.m. at Urbana Civic Ctr.
24 hr. BB 217 359-9090

IL, Davis

NI-HUG Northern IL HUG
427 Lockwood Rt. 1

Davis, IL 61019

815 248-2241

Contact Person: Jim Isenhart
Just starting

IL, Downers Grove

I-HUG (lllinois HUG)

6116 Lane

Downers Grove, IL 60516

312 971-1660 Group Size: 15
Contact Person: Len Bateman

3rd Wednesday at various locations

IL, Downers Grove

HUG Metro (Local Chicago)

15 W. 780 Fillmore

Elmhurst, IL 60126

312 985-2381 Group Size: 30

Contact Person: Larry Shipinski, President
Meet 2nd Mon. of each mo. 7:30 p.m. at HEC

IL, Peoria

CIHUG (Central Illinois HUG)
2422 Willow

Pekin, IL 61554

Hl, Hilo 309 347-3366 Group Size: 17

BIHUG (Big Island HUG) Contact Person: John Cole, Jr.

P. O. Box 4271 3rd Sun. at 3 p.m. (Jan, Mar, May, Jul, etc.)
72

REMark ¢ June » 1984



IL, Springfield

217 753-5795

Contact Person: Bobby Wright
Club just forming

IN, Indianapolis

Indiana HUG (IHUG)

11425 Lakeshore Dr. West

Carmel, IN 46032

317 852-3530 Group Size: 75+
Contact Person: Charles C. Hillman, Jr.
Meet 2nd Wed. 7:30 p.m. at HEC

IN, South Bend

MIHUG (Michiana Hug)

52578 US 31-33 North

South Bend, IN 46637

219 255-3923 Group Size: 10
Contact Person: Mark L. Meidel
Meet 3rd Mon. 7:30 p.m.

KS, Mission

MUG (Mission Users’ Group)
5960 Lamar Avenue

Mission, KS 66202

913 649-0879 Group Size: 80+
Contact Person: Charles L. Bennett

Meet last Sun. of the mo. 2:00 p.m. at Mission HEC

BB 913 362-9583 and Newsletter

KS, Wichita

Wichita HUG

1909 Siefkin

Wichita, KS 67208

316 681-3456 Group Size: 18
Contact Person: David Horwitz

2nd Sun. of odd months 2:00 p.m. at E. Pike Bidg.

Corner of Webb and Kellog in Wichita

KY, Louisville

LHUG (Louisville HUG)

6802 Crossmoor Lane

Louisville, KY 40222

502 426-9433

Contact Person: Ray Donner

Meet last Sun. at 8:00 p.m. at Louisville HEC

LA, Lafayette

ZUG (Zenith Users’ Group)

318 W. St. Mary Blvd.

Lafayette, LA 70506

318 948-7804 Group Size: 40
Contact Person: Tommy Billiodeaux
Meet every other Tues. 6:00 p.m.
Meet at Zenith Computer Depot

LA, New Orleans

NOHUG

1900 Veterans Blvd.

Kenner, LA 70062

504 467-6321 Group Size: 60
Contact Person: Nathan Gifford

1st Wednesday at 7:30 p.m. at HEC

MA, Northampton

Hampshire Computer Club

37 Drewson Drive

Northampton, MA 01060

617 584-6227 Group Size: 80
Contact Person: George Scheurer

2nd Tuesday 7 p.m. at McConnel Hall Smith College

Beginners Group 1st Tuesday

MA, Peabody

HUG North Shore

6 Susan Drive

Saugus, MA 01906

617 233-2941 Group Size: 60

Contact Person: Hal Messinger, Pres.
BB 617-531-9332 24 hours

2nd Wednesday Hilltech Bldg Danvers

MA, Pittsfield

BerCHUG (Berkshire County HUG)

73 Waverly Street

Pittsfield, MA 01201

413 443-1862 Group Size: 12

Contact Person: Paul E. Quellette, Pres.
Meeting place and time vary

MA, Wellesley

HUG'EM

165 Worcester Ave

Wellesley, MA 02181

617 237-1510 Group Size: 200

Contact Person: Malcolm Partridge, Director
3rd Wed. 7:00 p.m. at HEC

BB 617 237-1511 24 hrs.

MD, Baltimore

Baltimore HUG

6106 Marlora Road
Baltimore, MD 21239

301 323-6093 Group Size: 50
Contact Person: William Frey

2nd Mon. 7:00 p.m. at Park School - Old Court Road

MI, Ann Arbor

A-SQR-HUG

895 Starwick Drive

Ann Arbar, Ml 48105

313 769-6052 Group Size: 15+
Contact Person: Leonard E Geisler

Meet last Thurs. 7-9:30 p.m. Jun-Aug Huron High Sch.

Meet Sep.-May at Northside School

MI, Detroit

Metro Detroit Area HUG

7716 Winona

Allen Park, MI 48101

313 928-7423 Group Size: 50
Contact Person: Chuck Dattolo

REMark « June » 1984



MI, Kalamazoo

SMHUG (Southwest Michigan HUG)

623 Wildwood Place

Kalamazoo, M|l 49008

616 349-3535 Group Size: 50

Contact Person: Al Jacobs, Sec./Treas.

4th Saturday 1 p.m. at Western Michigan Univ.
Moore Hall, Rm. 1034, Newsletter

MI, Saint Joseph

BLHUG (Blossomland HUG)

P.O. Box 414

Saint Joseph, MI 49085

616 983-0161 Group Size: 50

Contact Person: Vance Fisher, Chair Person

1st Tues. 7:00 p.m. at St Joe High Sch. Cmptr. Classrm
$15.00 dues/yr., Monthly Newsletter

MN, St. Paul-Minneapolis

SMUGH

5085 Fern Drive

Loretto, MN 55357

612 479-2127 Group Size: 150

Contact Person: Mary or Gene Hess

Meet last Sun. 2:00 p.m. at Falcon Hgts. Comm. Ctr.
BB 612 778-1213 7 p.m.-8 a.m.

MO, St. Louis

SLHUG (St. Louis HUG)

3794 McKelvey Road

Bridgeton, MO 63044

618 259-8113 Group Size: 120
Contact Person: Brad Pulaski, Treasurer
Meet 2nd Wed. 7:30 p.m. at HEC

NC, Charlotte

HUG Charlotte

2152 Malvern Road

Charlotte, NC 28207

704 375-1581 Group Size: 100

Contact Person: Jim Simpson

All types of computers, H/Z owners comprize 25%
Meet 1st Tues. 7:30 p.m.

NC, Fayetteville

Cape Fear Computer & HUG
2454 Vandemere Avenue
Fayetteville, NC 28304

919 485-4586 Group Size: 25
Contact Person: Jerry Mills, Pres.
Varies, monthly

NC, Glen Alpine

Western Piedmont HUG

Rt. 2, Box 371

Morganton, NC 28655

704 584-3684 Group Size: 10
Contact Person: Bill Poteat
Meeting time and place varies
Just getting started. Will have BB

NC, Hillsborough

HUG-RTP

Rt. 3, Box 39A

Hillsborough, NC 27278

919 73-6678

Contact Person: Joe Williams
Meeting place and time unknown

NE, Omaha

OMAHUG (Omaha HUQG)

P. O. Box 777

Bellevue, NE 68005

Group Size: 85

Contact Person: Phil Evans, Pres.

3rd Sun. odd mos. 6:30 Bellevue W HS or Offutt AFB
Meet even mos. Amer. Red Cross 6:30 p.m.

NJ, Fairlawn

HUGN]) (HUG of New Jersey)
124 Mohawk Drive

Cranford, N) 07016

201 791-6935 Group Size: 155
Contact Person: Mel Beiman
BB 201 791-6936 evenings

3rd Monday 8:00 p.m. at HEC

NJ, Ocean

SHUG (Shore HUG)

1013 State Hwy. 35

Ocean, N} 07712

201 775-1231 Group Size: 71

Contact Person: James ). Jones, Jr., Sec.
Meet 1st Wed. 7:30 p.m. at Ocean HEC
BB 201 775-8705 24 hrs.

NM, Albugquerque

Albuquerque HUG

7909 Hendrix NE

Albuquerque, NM 87110

505 294-1658 Group Size: 25+
Contact Person: Ken Benson
Meet 3rd Sun. at members homes

NY, APO New York

BAHUG (Bad Aibling HUG)

Unit AA Box 561

APO New York, NY 09098

Group Size: 10

Phone: 08061-4519/6340 West Germany
Contact Person: Louis J. DeMichele

NY, APO New York

BWHUG (Bentwaters HUG)

PSC Box 3703 RAF Bentwaters
APO New York, NY 09755
Contact Person: Sgt. Rodney Jones

NY, Buffalo

BUG (Buffalo Users Group)

223 Clark Road

Kenmore, NY 14223

Group Size: 75

Contact Person: Bob Allen

Meet 3rd Sun. 1:30 p.m. at Amherst HEC

74

REMark ¢ June « 1984



NY, Long Island

Jeri-HUG (Jericho HUG)

5 Helen Place

Glen Cove, NY 11542

516 676-5616 Group Size: 75

Contact Person: Alan Scott Dodge, Sec./Treas.
Meet 2nd Thurs. 8:00 p.m. Jericho Pub. Library
Monthly newsletter, software library

NY, North White Plains

North White Plains HUG

Elliott Ser. Co. 720 White Plns. Rd.
Scarsdale, NY 10583

Group Size: 50

Contact Person: Peter Abramson

Meet 2nd Tues. ea. mo. 7:30 p.m. at HEC

NY, Potsdam

CCT HUG (Clarkston College)

Woodstock Vig Apt 3B24

Potsdam, NY 13676

315 268-6455 Group Size: 60

Contact Person: Marc A. Rubin

Meet monthly-call for date, time and place
Club just getting started

NY, Rochester

RHUG (Rochester HUG)

937 Jefferson Road

Rochester, NY 14623

716 424-2560 Group Size: 50+

Contact Person: RHUG Editor, Blanche Nail
Meet last Tues. each mo. 7:30 p.m. at HEC
BB 716 424-2576

NY, Schenectady

Schenectady HUG

C/O T. Budge 715 Sanders St.

Scotia, NY 12302

518 377-4273 Group Size: 20

Contact Person: Walter Whipple

Meet 3rd Wed. 7:30 p.m. at above address
BB 518 457-3803

OH, Cincinnati

Cincinnati HUG

10133 Springfield Pike

Woodlawn, OH 45215

513 771-8850 Group Size: 90

Contact Person: President

2nd Tues. 7:00 p.m. at HEC, $10.00 dues/year
Newsletter, 24 hr. BB 513 772-6190

OH, Cleveland

NOHUG (Northeastern Ohio HUG)
4705 Tanglewood Place

Lorain, OH 44053

216 282-4790 Group Size: 70
Contact Person: Art Petkosek

Meet 2nd & 4th Thurs. 7 p.m. at St. Gregorys Church

OH, Cleveland
Cleveland HUG
28100 Chagrin Blvd.

Cleveland, OH 44122

216 291-1612 Group Size: 10
Contact Person: Gerry Ciganko
First Thurs. 7:00 p.m. at HEC
BB 216 292-7553 24 hours

OH, Columbus

Columbus HUG

2500 Morse Road

Columbus, OH 43229

614 475-7200 Group Size: 25
Contact Person: President

Meet 2nd Mon. at HEC

BB 614 475-7201 after store hours

OH, Dayton

Wright-Patterson HUG

4110 Spruce Pine Court

Dayton, OH 45424

513 236-4915 Group Size: 75
Contact Person: Jim Moore, President
Meet 1st Thurs. 4:00 p.m.

Meet Bldg. 640 Rm. 121 W-P AFB

OH, Toledo

THUG (Toledo HUG)

48 S. Byrne Road

Toledo, OH 43615

419 729-4621 Group Size: 300

Contact Person: Ryck Zarich

Meet last Sun. of the mo. at 7:00 p.m. at HEC
BB 419 537-1888 24 hrs. also 729-4221

OK, Oklahoma City

OKC TUGS .
C/0O Bill Cadwallader P. O. Box 1171
Lawton, OK 73502

405 848-7593 Group Size: 40
Contact Person: Bill Cadwallader
Meet 3rd Thurs. 7:30 p.m. at HEC
BBS 405-848-9329 24 hours

PA, Allentown

Lehigh Valley HUG

1425 N. Broad St

Allentown, PA 18104

215 770-5993

Contact Person: James Batug

2nd contact Carol Bloch 215 770-4640
Just getting started

PA, Frazer

FUG (Frazer Users Group)

1641 Princess Anne Drive

Lancaster, PA 17601

717 397-3146 Group Size: 80
Contact Person: Dave Hendrie, Pres.
1st Saturday 4:00 p.m. at Frazer HEC
BB 215 644-7661

REMark * June « 1984

75



PA, Harrisburg

CPaHUG (Cent Pennsylvania HUG)
7540 Mourningstar Dr. % E. Asper
Harrisburg, PA 17112

717 545-2764 Group Size: 7
Contact Person: Ernest E. Asper
Meeting time & place varies

Club just getting started

PA, Philadelphia

Philadelphia Heath Users’ Group

6318 Roosevelt Blvd.

Philadelphia, PA 19149

215 288-0180 Group Size: 135

Contact Person: Henry F. Beechhold, Pres.
Meet 2nd Wed. each mo. 7:00 p.m. at HEC 8

PA, Pittsburgh

PittsburgHUG

3482 William Penn Highway
Pittsburgh, PA 15235

412 793-6781 Group Size: 35
Contact Person: John C. Schultz, Pres.
Meet 3rd Tues. at 7:00 p.m, at HEC
BB 412 824-3565 after store hours

Rl, Warwick

HUG-'RI' (HUG of Rhode Island)

558 Greenwich Avenue

Warwick, Rl 02886

401 738-5150 Group Size: 150

Contact Person: Leo Therrin/Dave Haskell
2nd Wednesday 8 p.m. at HEC

SD, Sioux Falls

Sioux Falls Area HUG

2001 S. Spring Avenue

Sioux Falls, SD 57105

605 336-8629 Group Size: 20

Contact Person: Lorin Dobson

Meet once a month on Sat. Time and place varies
BB 605 336-3935 M-F 3pm-12am

TN, Knoxville

ETCHUG East Tenn Central HUG
7608 Luscombe Dr.

Knoxville, TN 37919

615 690-3864 Group Size: 20
Contact Person: Walter M. Scott Il|
Meet 3rd Thurs. 7:30 p.m.

Meet at John XXIIl Center

TN, Memphis

Memphis HUG

6874 Kirby Brooks Drive

Memphis, TN 38115

901 362-8860 Group Size: 16

Contact Person: Morris Proctor

Meet 2nd Tues. 7:00 p.m. at The Computer Center

TN, Nashville

Mi Te HUG (Middle Tenn HUG)
C/O Radio Ser. Ctr. 116 17th Ave. S
Nashville, TN 37203

615 242-0556
Contact Person: Charlie Wolf
Meet 2nd Mon. 6:30 p.m. at Radio Service Center

TX, Austin

AHUG Austin Heath Users Group

4206 Tamarack Trail

Austin, TX 78759

512 255-0376 Group Size: 40

Contact Person: George Koehler

Meet 1st Thurs. 8:00 p.m. Univ. of Texas
Meet at Robert Lee Moore Hall

TX, Dallas

DFW HUG (Dallas-Fort Worth)

2715 Ross Avenue

Dallas, TX 75201

214 826-4053 Group Size: 70

Contact Person: Henry Gardiner, Pres.

1st Thurs, and 15 days later (Wed.) at 7:30 p.m.
At HEC BB 214-742-1380

TX, El Paso

EPHUG (El Paso HUG)

4554 hercules #63

El Paso, TX 79904

915 755-1728 Group Size: 18

Contact Person: Rick Peterson

Meet 3rd Wed. at 7:00 p.m. at 444 Executive Ctr Blvd.
BB 915-592-1910 7:00 p.m.-7:00 a.m all day Sun.

TX, Ft. Worth

FWHUG

6825A Greenoakes Road

Ft. Worth, TX 76116

817 737-8822 Group Size: 26
Contact Person: John lke Mitchell
Meet fourth Thurs. 7:30 each month

TX, Houston

HUG-H

7798 Braniff

Houston, TX 77061

713 644-5689 Group Size: 75

Contact Person: Tom McCormick, Pres.

TX, Houston

NHHUG (North Houston HUG)

8110 Tattershall Circle

Humble, TX 77338

713 446-1787 Group Size: 50+
Contact Person: Paul Eustace

Meet 3rd Tues. 7:30 at HEC

2nd contact Mark Shafer 713 583-1163

TX, San Antonio

San Antonio (SAHUG)

7111 Blanco Road

San Antonio, TX 78216

512 341-8876 Group Size: 65
Contact Person: Tom Schneider
First Tuesday at HEC, 7:30 p.m.

76

REMark * June = 1984



TX, Wichita Falls

NORTEX HUG (N, Texas S. Okla)
2413 Kemp Blvd. in Office World
Wichita Falls, TX 76309

817 322-1007 Group Size: 24

Contact Person: Alan D. Martin

Meet third Sat. 9 a.m. at above address

UT, Castle Dale

Castle Mesa Computer Group

670 N. 90 E. Box 123

Castle Dale, UT 84513

801 381-5173 Group Size: 10

Contact Person: Doug Sorensen

Meet 3rd Thurs. 5:30 p.m. above address

UT, Midvale

UHUG (Utah HUQ)

58 E. 7200 South

Midvale, UT 84047

801 262-8810 Group Size: 130
Contact Person: Wayne Newland
2nd Wednesday 7:00 p.m. at HEC
BB 801 566-4551

VA, Christiansburg

New River Valley HUG

C/0O CCS Data Sta. 8 Roanoke St.

Christiansburg, VA 24073

703 382-4234 Group Size: 35

Contact Person: Ted Fleshman

Meet Tst Thurs, 7:30 p.m. Christiansburg High School

VA, Fairfax

CHUG (Capital HUG)

P. O. Box 2653

Fairfax, VA 22031

703 759-6176 Group Size: 600+
Contact Person: Mike Supley, Pres.
3rd Monday 7:30 p.m. at Fairfax H.S.
Large Software Library (150+ disks)

VA, Richmond

RHUG (Richmond HUQG)

4302 Smithdeal Avenue

Richmond, VA 23225

804 231-6759 Group Size: 20+
Contact Person: Carlos Chafin

Meet 3rd Mon. 7:30 p.m.

Meet at Alpha Audio 2049 W. Broad

VA, Virginia Beach

THUG (Tidewater HUG)

1055 Independence Blvd.
Virginia Beach, VA 23455

804 467-4232 Group Size: 115
Contact Person: Skip Kelly

1st & 3rd Tues. 7:30 p.m. at HEC

WA, Bellevue

Pacific Northwest HUG

C/O Barry Dupler P. O. Box 993
Bellevue, WA 98009

206 363-3927 Group Size: 150

Contact Person: Nathan Hall
Meet 2nd Thurs, odd months Tukwila HEC (both 7:00)
Meet 2nd Mon, even months Seattle HEC

WA, Spokane

SPOHUG (Spokane HUQ)

S. 3810 Havana

Spokane, WA 99204

509 448-9727 Group Size: 25

Contact Person: Charles Ballinger

Meet last Thurs. 7-9 p.m. at Acme Business Computers
BB 509 927-0367 24 hrs.

WA, Vancouver
Portland-Vancouver HUG

516 SE Chkalov Drive
Vancouver, WA 98663

206 254-4441 Group Size: 30
Contact Person: Dan Heims

1st Thursday at 7:30 p.m. at HEC
Portland OR and Vancouver Area

WA, Walla Walla

HUG/ZUG of Walla Walla

112 N. Division

Walla Walla, WA 99362

509 525-8404 Group Size: 8+

Contact Person: Pat Hanna

Meet 2nd & 4th Tues. 8p.m. at 112 N Division
2nd contact Pete Parcells 509 527-5267

Wi, Madison

Madison Area HUG

3519 Tally Ho Lane

Shorewood Hills, Wl 53705

608 233-4588 Group Size: 9

Contact Person: Thomas Gans

Meet 1st Wed. 7:30 p.m. at Wisconsin Union South

Wi, Madison

UWHUG (Univ. of Wisconsin HUG)

109 N Few

Madison, W1 53703

608 257-0373 Group Size: 30

Contact Person: Walter Burt

Meet 1st Wed. 7:30 p.m. at Univ. W| Union South
Club newly formed 12/83

Wi, Milwaukee

MHUG Milwaukee Heath Users Gp.

9040 N. Lake Drive

Milwaukee, WI 53217

414 352-3346 Group Size: 65

Contact Person: Marvin Olson, Treas.

Meet 3rd Sat 2:00 p.m. at Milw. Sch. of Eng. Rm. L-100
BB 414 873-7564 6:00p.m.-6:00a.m.

WI, Mosinee

CWHUG-Central Wisconsin HUG

2294 CTH DB

Mosinee, WI| 54455

715 693-3429 Group Size: 10

Contact Person: Edward Ignace Porwit
Meet last Sun. 3:00 p.m. in Ed’s livingroom
BB coming soon

REMark * June = 1984

77



CANADA, Calgary, ALBERTA
HUG (Heath Users of Canada)

101 5809 Macleod Trail South
Calgary, Alberta T2H 0)9 CANADA
403-252-2688

Contact Person: Gary Selman

CANADA, Ottawa, ONTARIO

HUG ‘O’ (HUG Ottawa)

866 Merivale Road

Ottawa, ONTARIO K1Z 5Z6 CANADA
613-728-3731 Group Size: 30

Contact Person: Brian Fultz, Pres.

2nd Wednesday 8:00 p.m. at HEC

CANADA, Toronto, ONTARIO
THUG (Toronto HUG)

1480 Dundas Street E.

Mississauga, ONT. CANADA L4X 2R7
416 273-3797 Group Size: 25
Contact Person: Bill Smith

CANADA, Vancouver BC
VANHUG (Vancouver HUG)

3058 Kingsway Attn. Robert Hudak
Vancouver BC, CANADA V5R 517
604 437-7626 Group Size: 50+
Contact Person: Robert J. Hudak
Meet last Tues. 7:30 p.m. at HEC

CANADA, Vancouver, BC

Vancouver Island HUG

2022 Douglas St.

Victoria, BC CANADA V8T 4L1

604 384-4711

Contact Person: Greg Greene, Pres.

Meet each month at Excalibur Systems Ltd.
For further info call above number

FRANCE, Paris

GUFIN (French HUG)

34 Boulevard Saint-Jacques

75014 Paris, FRANCE

1-336-39-68 Group Size: 300

Contact Person: Dr. Bernard Pidoux

Meet weekly on Wed. eve. at club address
CBBS (1) 336-32-02

HOLLAND, Apeldorn

Dutch HUG

Hofstraat 30

7311 KW Apeldorn HOLLAND
Group Size: 70

Contact Person: Evert Jan Stokking

HONG KONG

Compudragon

273 Prince Edward Road

11/C Kowloon, HONG KONG
3-711-8904

Contact Person: K. T. Lee

Club just organizing

NETHERLANDS

Dutch Heath Users’ Group

NIEUWE KERKHOF 16

9712 PV Groningen, NETHERLANDS
050-180203 Group Size: 107
Contact Person: Evert Jan Stokking
Meet quarterly at Amersfoort

New Zealand

HUG New Zealand

94 Dowse Dr.

Maungaraki, Lower Hutt, NEW ZEALAND
695-924 Group Size: 1

Contact Person: Mr. R. Siebers

Would appreciate New ZInd REMark readers contact

Eager to expand group

OKINAWA

OKIHUG (Okinawa Users Group)
C/0 Carl Eaton Box 376 USAFSO
APO San Francisco, CA 96331
Group Size: 22

Contact Person: Carl H. Eaton

Meet one Friday month at 7:00 p.m.
Meeting place varies

PANAMA CANAL

Canal HUG

P.O. Box 1112

APO Miami, FL 34001

84-4094 Group Size: 6

Contact Person: Michael Gulick, Pres.

1st Tuesday 7:30 p.m. at Howard Air Force Base

PUERTO RICO, Rosario

PRHUG (Puerto Rico HUG)

Calle La Paz #706, Miramar

Santurce, PR 00907

809 725-1612 Group Size: 21

Contact Person: Joseph Gonzalez

Meet 2nd Sunday of odd numbered months

W. GERMANY, Frankfurt

Frankfurt HUG

American Consulate General FRDCO
APO NY, NY 09757

566187 Group Size: 3

Contact Person: Carl Lovett

W. GERMANY, Sprendlingen
HUG-Deutschland
Robert-Bosch-Strasse 32-38
D-6072 Dreieich W. GERMANY
06103-34037 Group Size: 200
Contact Person: Lydia Luguet

\/
WA

78

REMark * June * 1984



Realistic
Benchmark
Results

Oneday when | had nothing to do (HA HA!), | decided to see which
of my H/Z computer systems was fastest. | recently converted to
CP/M Plus on my H-89 and that seemed to really be a fast system
compared to the Magnolia CP/M 2.242 | had been using. When |
went to CP/M+, | was telling professionals in this field about the
‘apparent’ (and | say apparent because | never tested it, it was just
instantly noticed sitting down and using the system - when you
constantly work with 8000 record databases, there is quite a differ-
ence between a 1 hour index and a 6 hour index) speed increase and
they all told me it was impossible. That also forced me and my ego
into performing the tests. No one could believe the difference in
results | claimed to be obtaining. | then got a Z-100 with a winchester
and although that seemed fast, it did not seem to match my H-89!
How could that be, a 4MHz H-89 beating a 5MHz Z-100 (both with
winchesters).

A benchmark was indeed necessary, but | had to develop my own
since too many benchmarks we see in all the magazines only tell part
of the story - CPU time. In most programs, especially where much
disk access is taking place (the bottleneck of the programs), the
published benchmarks don't tell the true story. The majority of the
business software we use around here depends heavily on disk I/O
and CPU speed. We use dBIl almost extensively for all our business
applications and mailing list maintenance. Whenever you use some-
thing like dBlI for indexed files, the power is enormous, but the disk
must be accessed twice for every record - once for the index and
once for the actual record. A SORT or INDEX takes a long time for
medium sized files (1000 to 5000) and an unbelievable time for large
files (BOOO or so). In fact, with something like dBIl where sort and
index are done on the ‘bubble’ technique, the time increases almost
exponentially with the number of records.

The benchmarks done here were standardized as much as possible,
using only H/Z computers with standard available options, if any
options were used. Tests were performed on a range of 5" hard sector
floppy drives to winchesters, most at both 2 and 4MHz. Please note
that all floppy drives were computer start/stop motor drives, thus
were not ready to go and rotating upon access, although even these
tests kept all drive motors going constantly once the test started. A
winchester is always spinning. The 5 floppy spins at 300 RPM, the
8" floppy at 360 RPM, and the winchester at about 3000 RPM!

Which H /Z System Is Fastest?

Henry Fale

Quikdata Computer Services, Inc.
2618 Penn Circle

Sheboygan, WI 53081

These tests allow one to see the disk access part vs the CPU speed.
For this test | used 836 records, each being a random indexed file of
165 bytes. For us this is a very small database, as our main database
consists of over 8000 records. dBIl 2.3B was used as the main
program under various CP/M operating systems on various H/Z
computers at various CPU speeds and using various processors. A
dBll command file was made to first pack the records. This involves
going through every record and deleting the ones which were previ-
ously marked for deletion, which none were. Then the entire file of
836 records was indexed on its 9 byte ‘key’ character field. This
involves reading the entire file and creating a sorted index, or refer-
ence pointer, to the main data base file. After this, it then indexed the
main database file according to a 25 byte ‘name’ character field.
Naturally, the larger the field, the larger the index will be and the
longer it will take to index that part. All this was done using one of our
modified modules in QUIKMAIL. Since ‘sorting’ or indexing in-
volves much CPU power, and it is also very disk 1/O bound since
dBIl builds both its database file and index on disk, | felt it was an
excellent test. The 836 records occupied 136K disk storage. The 9
character ‘key’ field when finished occupied 16K disk storage and
the 25 character ‘name’ field occupied 42K disk storage space. This
should be sufficient data for anyone to repeat the experiment on
other systems, or verify the data,

The program used very little screen | /O, thus that was not a factor.
Some systems were going at 9600 baud, some at 19.2K baud, and the
Z-100 seemed to be about 4800 baud. If much screen 1/O was going
on, the Z-100 would have been slower than tests indicate. There was
no printer output either, thus printer speed, another bottleneck, did
not enter into the results. Keep in mind that when | mention the H-8,
the results should apply equally to the H-89, and likewise when |
mention results found on the ‘89, it should apply to a similarly
structured H8 system.

This test is the result of nearly a nervous breakdown from converting
so many disk formats, and having the stopwatch batteries constantly
run down only to have to repeat the test again (itis a Heath stopwatch
and the floppy tests were very time consuming).

I don’t want to go on sounding like I’'m needlessly babbling, but | felt
the data was important since it gives a very thorough test to all H/Z
computers with many different accessories and different versions of
CP/M operating systems.

REMark * June = 1984

79



The Results

Z-100 with 192K RAM, CP/M-85 on the 8-bit 5MHz processor using
an 8" external floppy stepping at 3ms - 19:20 (minutes:seconds).
Same Z-100, same 8 bit 5MHz 8085 processor with the built-in
winchester - 9:26. Same Z-100 and operating system, only this
time on the internal soft sector 5” floppy - 46:42. These results are
not surprising. The disk transfer rate of data on an 8’ soft sector
double density floppy is twice that of the 5”. The surprising thing is,
more than twice the time difference, perhaps because of buffering
differences. In each case, the processor, operating system and CPU
chip were identical. The winchester results were not at all surprising,
since the winchester is always much faster, sometimes about 10
times faster than the floppies. That's why | always feel any serious
business computer must have a winchester on its system, and have
the CPU clocked to its highest rate to get efficient results from the
machine. After all, time is money! The hobbyists can afford to start a
sortor run a G/L for a small customer and come back 7 hours later.
The business man cannot - not to mention the reliability of win-
chesters,

| completed additional tests on the Z-100. This test used the Z- 100
with 192K internal main board memory and 256K Z-205 card. Tests
were run on the 16 bit side, under MP/M-86. Three terminals were
installed but idle except for one where occasional DIR’s were done
to be sure the system was multi-user. The MP/M is Barry Watzman'’s
implementation complete with interfacer 1V serial I/O card for the
extra terminals. A winchester was used. Time for the test was 12:05.
This is not bad since the dBIl CP/M-86 version (set up for MP/M
operation) is actually a translated 8 bit version, thus does not have
the 16 bit speed advantages. Also considering MP/M overhead, |
don’t think it's real bad.

Nextis the 64K H8 with the Z-67 winchester runningthe H/Z 2.2.03
CP/M operating system at 2MHz, The 4MHz was run on the same
system, modified by BIOS-80 for 4MHz operation and H-17 support
from Livingston Logic Labs, The H8 had the Trionyx Z80 CPU, 4MHz
ready memory board from Trionyx and gold mother board, and is fan
cooled for superior dependability, Z67 winchester at 2MHz - 50:54.
At 4 MHz - 48:29. | was extremely disappointed in these results.
The Z-67 was Zenith’s best answer for the businessman’s super
system a few years back, and the Z-100 on 8” drives beats it at either
speed - and by amile!!I'm sorry, butl wouldn’t dare run that test on
the built-in Z-47 compatible 8" floppy. It would have either torn the
heads apart with constant head loading and unloading, or I'd still be
waiting for the test to finish. Being fair to the Z-67, it was yesterday’s
technology released too late after its time and it does make a good
heater - but it is very reliablel

H8 using Heath’s Z80 CPU card and also Heath’s 64K RAM memory,
only running at 2MHz on 5" hard sector drives, Keep in mind that a
5" hard sector drive transfers at 1/2 that of soft sector 5" which is
only 1/2 that of 8" which is many times slower than
winchesters - whew! This test again used H/Z CP/M 2.2.03 mod-
ified by Livingston’s BIOS-80, since naturally we can’t fit that much
test data on a 100K disk! The test required minimum of 300 some K,
as would most business applications. Our 8000 name 128 byte
record client database takes up several megs of winchester storage
for the database and indexes. And you should see the index times on
dBII! 836 names were all | could tolerate during the tests! Anyway,
back to the results, the time was 70 some minutes (sorry, stopwatch
batteries burned out again and this one | did by clock and | did not
feel like repeating it!)! This is perfectly understandable considering
the slow speed of 5 hard sector floppies. | dont care if it is less
expensive, any business man using 5’ hard sector floppies (or soft for

that matter, especially if he uses his computer a lot) is out of his head!
It did surprise me that the hard sector 5"’ floppy was really not much
slower than the Z67 winchester! Totally blew my mind!

H8 using the Heath Z80 CPU and Heath’s 64K RAM running at
2MHz with 48 TPl DS DD drive on the soft sector H-37 controller
under Heath CP/M 2.2.03. Time was 37:52. 5’ soft sector floppy
beating the Z-67 winchester? Wow!

What about our Quikstor winchester? Using the H8 with Trionyx
Z80 CPU and 64K RAM card, the winchester was interfaced to the
H8 using the WH8-37 card. Again, H/Z 2.2.03 CP/M was used and
the tests were run at both 2 and 4MHz. Time at 2MHz - 12:57.
Time at 4MHz - 8:57. Again, a bit surprised that our standard
CP/M H8 with a winchester and CPU zipping at 4MHz did indeed
beat the 5MHz Z-100 with winchester! | don’t quite understand that,
but am very disappointed with my Z-100 and pleased with my H8/
Quikstor combo.

Next test was with an H-89 running Magnolia CP/M 2.2.42, 64K
RAM with our 15 meg winchester at 2MHz - 12:21. Not bad com-
pared to the Z-100 5MHz with winchester, Consider this when
thinking about trade vs update. Since | no longer use 2.2.24 CP/M
and it was a real pain getting this back up on the winchester, no other
tests were done on this CP/M with Magnolia DD board and SASI
interface.

| am presently using, and have been for about 6 months, Magnolia
Microsystem’s CPM+ complete with 128K RAM card. | am operating
at 4MHz CPU with 19.2K baud CRT rate and 15 meg Quikstor
winchester. This system never ceases to amaze me. In addition, | also
have on this system a set of 5’ hard sector H17 drives, 5 soft sector
H37/MMS/Z-100 compatible drives, 8" CP/M compatible, Z-47
and MMS compatible drives via MMS 77316 double density control-
ler, running both HDOS and CP/M and CP/M+! (Guess which
system | use for all my disk conversions?) This system beats the Z-100
very shamefully, and needless to say, it is my main business system
and has been even before CP/M Plus came around. Here are the
astounding results: 8" floppy - 26:30 at2MHz and 24:10 at4MHz!
Not as much difference as | expected, butthen the programs are quite
1/0 bound and that accounts for much of the processor’s time. The
15 meg winchester had unbelievable times of 4:42 at 4MHz and
7:32 at2MHz - beating the Z-100 to pieces even when running the
H-89 at 2MHz! There’s much more to the story than meets the eye,
however, since CP/M Plus uses more and better disk buffering and
uses hash techniques for directory R/W - this makes for a faster
operating system, especially concerning directory lookup. Also, with
CP/M+ CCP is always in banked memory. Some of the banked
memory is also used for disk buffering and other efficient functions,
thus there is none for the user in the Magnolia implementation. But
fast it is.

Brad Gjerding of Magnolia also ran the tests for me in their Magnolia
File Server being used in a single user computer (that's actually what
a file server is, a 4MHz Z80 computer). He was running CP/M+ at
4MHz. The 8" drive completed the test in 14:00, while the 15 meg
winchester took 4:56. The winchester time was very close to the
results | obtained using the H-89 at 4MHz with CP/M+, but the 8"
floppy was faster for some unknown reason. Brad next ran the test in
the network mode (via MP/M and CP/NET) using E29 terminal
requester to access the file server. This test completed in 20:47,
which is about what was expected since CPU power is used to
handle the network.

There you have it. The results show some interesting things about
system efficiency using different CPU speeds and various assort-
ments of disk drives. The most important differences here and the

80

REMark « June « 1984



greatest speeds were obtained in every case (except Z-67) using
winchester and CP/M+.

Quick Summary

I’ll itemize the findings in descending time order in a table for easy
comparison. Because of column width I'l| use the following abbrevi-
ations: DS = doublesided, W = winchesterdrive, 2M = 2MHz,
4M = 4MHz, MMS = Magnolia 2,2.04 CP/M, MC+ = Mag-
nolia CP/M+, HC = Heath CP/M 2.2.03, HLC = Heath CP/M
2.2.03 modified by Livingston’s BIOS-80, QSW = Quikda-
ta/Heath Quikstor Winchester 2/4 MHz BIOS, C5 = Zenith's
CP/M-85 = Z-100 8 bit CP/M, QSW = Quikstor 15 meg win-
chester, FS = MMS File Server, MPM = MP/M multi user operat-
ing system. All computers have maximum memory, 64K for H8 and
H-89, 192K Z-100.

He H17 HLC 2M 70:00
H-89 an MMS 2 61:02
H8 Z6TH  HLC 2M 50:54
H8 Z67TW  HLC 2M 48:29
zZ-100 6" c5 5M 46:42
H8 237 HC 2M 37:52
H-89 an MC+ 2M 26:30
H-89 gn MC+ 4N 24:10
FS W MPM 4M 20:47
7-100 8" c5 &M 19:20
FS " MC+ 4M 14:00
HE Qsw QHC 2M 12:57
H-89 MMS QSW 2M 12:21
z-100 W MPM 5M 12:06
z-100 W c5 5M 09:26
HB Qsw QHW aM 08:57
H-89 Qsw MC+ 2M 07:32
FS W MC+ 4M 04:56
H-89 QsW MC+ 4M 04:42 %

__PAUL F HERMAN 3=
" DATA SYSTEMS CONSULTANT

P.0.Box 535
St. James City, FL 33956

NER - PERSONAL DATA MANRGEMENT SERIES
...including ....

@ Appointment Calendar ® VYehicle Log
® Mailing List ® Recipe List
® Household Inventory @ Coupon Organizer
® Periodical Index ® Library Index
® Record Index ® VYideo Tapa Indax
@ Audio Tape Index ® Check Ragister

A1l on ONE disc for ONE price. .. $ 59 as

DOODLER craphics Package $78.95

L1000 SOFTWARE

Prepaid orders sent post-paid. Florida residents
please include S parcent sales tax.

Send SASE for additional Info on Programs.
We are an authorized ZENITH Data Systems Dealer

This entire ad was printed actual size using
DOODLER, a 7100, and a GEMINI-i8x printar.

Dealer Inquiries contact - YELLOW ROSE SOFTHARE
10208 N. 30th Street., Tampa, FL 33612

ANNOUNCING THE MODIFIER

A disk utility that modifies the CP/M BIOS to be able to read and
write to a number of 5.25"” CP/M disk types.

There is a growing need for the everyday user of compuler & to be able to take
data files home from the office to continue to work on them. computers at home
and at work m%bom run a version of CP/M, but the disk structures may be
Incompatibis is Easspaclallya problem in the 5.25" world, MODIFY 89 was
designed to this problem. MODIFY 89 makes the CP/M operating system
maspeﬂﬁed 5.25" drive as one of the below disk types.

Disks placed in that drive that are of the specified type can be used as |f they were one
of the standard disk types acce by the H8, H/ZB9 or H/Z20 computers. Thus PIR
STAT, DIR and others will work for that disk also. The price for MODIFY 89 is $49.95,

MODIFY 89 is set for the following disk types:

» Access S.S. D.D. e Otrona D.S. D.D.*

» Cromemco S.S. D.D. e Superbrain Jr. S.S. D.D.

» DEC VT180 S.S. D.D. e Tl Professional S.S. D.D.

= |BM PC/Zenith 100 (CP/M) S.S. * TRS-80 Model | (Omnikron
D.D. CP/M)

* IBM PC!Zenllh 100 (CP/M) D.S. * TRS-80 Model lll (MM
D.D CP/M)

° Kaypro 11S.S.D.D. » Xerox 820 §.S. S.D.

* Morrow Micro Decisions S.S. * Xerox 820-11 S.S. D.D.
D.D. e Standard

» NEC PC-8001A 8.S. D.D. ests for H/Z37 and

e Osborne S.S. S.D. .D.R. Disk types)

* Osborne .. D.D. * = Double sided 5.25" drive required
5.8, =single sided, D.S. = double sided, .. = single density, D.D. = double density

Limitations: MDD]FYEthdndlﬁdupllcm program. It is nwmymljn.blehru;n’e
with an HiZ89 or H/Z90 col opu as an FDC-880H double density 8” and 5.25
controlier, using C.D.R's BI vzsorwhhanHammpumusmm H8 by
C.D.R, Systems, Inc.

MODIFY 100 will soon be released for the Z100 line of computers at a price of $75.00.

c D H Systems, Inc.
7210 Clairemont Mesa Blvd., San Diego CA 92111
Telephone: (619) 560-1272

Or a C.D.R. Systems, Inc. dealer near you.

CONTROLLER

FOR 8”
& 5.25”
DRIVES

Now be able to run standard 8" Shugart compatible drives
and 5.25" drives (including the H37 type) in double and
single density, automatically with one controller.

Your hard sectored 5.25"” disks can be reformatted and
used as soft sectored double density disks. The FDC-880H
operates with orwithout the Heath hard sectored controller,

PRICED AT $395
Includes controller board CP/M boot
prom, I/O decoder prom, hardware/soft-
ware manuals BIOS source listing.
HDOS driver now available for $50.00.

5-20 day delivery-pay by check, C.0.D,, Visa, or M/C.

‘ . l Contact

C.D.R. Systems Inc.
7210 Clairemont Mesa Blvd.
San Diego, CA 92111

Tel. (619) 560-1272

REMark ¢ June » 1984

81



\

/
{
3

4

Pascal was originated by Niklaus Wirth
(reference 1) to teach structured program-
ming. It has become one of the predominant
programming languages and a favorite tool
for implementing software on microcom-
puters. Other famous languages such as C
and ADA have their basis in Pascal. One of
Pascal’s strongest points is its readability.
This factor alone contributes heavily to
many other desirable attributes. It is easy to
learn and easy to use. Software development
is not nearly as difficult or as messy in com-
parison with other languages such as FOR-
TRAN and BASIC. Pascal is well suited as a
program design tool. Program organization
and implementation plans are very effective
when prepared in a Pascal-like pseudo lan-
guage. It eliminates the need for flow chart-
ing. Modular packaging of the software code
in terms of procedures and functions in-
vokes the divide and conquer approach
greatly simplifying a program development
task.

The example of a financial calculator is cho-
sen to demonstrate some of the advantages
of programming in Pascal and how H/Z-89,
H/Z-19, and H/Z-100 features are im-
plemented with this language. It also pro-
vides a basic library of procedures and func-
tions for application in a variety of financial
programs.

This code was written for Lucidata Pascal,
version 3.J, from Polybytes, 325 19th St. S.E.,
Cedar Rapids, |A 52403. Tutorial Pascal arti-
cles in previous issues of REMark (reference
2) used this implementation. It has many
excellent features, all of which can hardly be
touched upon in this simple demonstration.
Three of them, however, should be pointed
out. For the sake of portability it adheres
rather closely to the 1SO standard; the few
departures are well chosen, essential for
serious programming, and are clearly iden-
tified. The cost is very reasonable and finally,
I have not knowingly encountered any nasty
bugs.

There are numerous books available for
people who wish to learn and write pro-
grams in Pascal. | have selected three of
these books. Reference (1) is a good refer-
ence for the standard. Reference (3) is a good
book to read for learning Pascal. Reference
(4) is an excellent book to consult for writing
programs. The Lucidata Pascal Manual is
also a good reference source. The distribu-
tion disk for Lucidata Pascal includes very
exceptional demonstration programs. Each
of these demonstration programs treats a
specific topic of the Pascal programming
language.

To avoid typing errors and to apply this
example as a learning tool, | would recom-
mend that you attack each procedure and
function independently. Transform each one
into a separate program, adding non-local
definitions and declarations so that it is a self
contained package. Compile and run the
separate packages, testing each one. When
you are finally satisfied, perform the inverse
transformation with your editor and copy the
file to your library disk.

Main Program

AscanbeseeninFigure 1, the main program
is only a few lines of simple code. It's pur-
pose is to perform the duties of a top level
executive, commanding and controlling as
required for specific actions of the program.

Data descriptions are always provided as the
first part of every Pascal program. It is good
practice to use standard identifiers, such as
BELL, BS, DEL, ESC, and SP to define the
global constants. If your compiler will allow
it, another helpful practice is to reserve all
upper case for symbolic names and con-
stants. | have elected to only use upper case
for constants in this example.

The constants ERRO and ERRT1 are used for
error checking. Since this is a relatively short
program, it seemed best to declare them as

Discovering Pascal
With a

'Financial Calculator

Karl L. Remmler
13090 LaVista Dr.
Saratoga, CA 95070

global constants. The GOTO with labels is
used only for the data error protection. The
variable flg is set to 1 for no data errorand -1
if there is a data error. | have attempted to
attain a reasonable amount of numerical
precision and accuracy over a realistic range
of solutions without adding too much extra
code. Your compiler may require limits on
such functions as exp() and In() than those
used in this example.

An array type, string having components of
the standard type char, is defined for han-
dling data 1/O. All of the financial equation
variables (n, nai, i, pmt, fv) and the two fre-
quency parameters (pf and cf) are typed real.
The menu selection variable ch is typed char
to accomodate functions keys as well as
number items in the menu. The equation
parameter continuous is TRUE for continu-
ous compounding and FALSE for discrete
compounding. Parameter x is either O for
ordinary annuity or 1 for annuity due; it is
typed integer. The financial equation, its var-
iables, and parameters are discussed in the
sequel.

Pragmats are included in the program fol-
lowing the variable declarations. The
Lucidata manual defines pragmats as se-
quences of characters embedded in a prog-
ram text that do not form part of the formal
language sequences. They are used here to
direct the compiler to insert Pascal proce-
dures and functions from the named file.
(There are a number of other uses included
in the Lucidata implementation, however, it
is not necessary to go into that now.) | nor-
mally work with my programming tools (i.e.
language processor, editor, utilities, etc.) on
drive A and library of source codes on drive
B. Therefore, b: is included with filenames
for procedures and functions being used
from my Pascal library.

The statement part of this program appears
rather short and simple, With exception of

82

REMark * June * 1984



the single while statement, it consists solely
of procedure calls. Variables and parameters
are first assigned their default values. Then
the menu is painted on the screen with vari-
ables printed at the proper locations by the
procedure newvals. Finally, function key as-
signments are shown by painting the 25th
line with appropriate labels in reverse video.

The while loop implements user interaction
with the program. Inkey reads the keyboard
character. Then procedure entry enables the
selection from the menu. If a number is
selected, the user is prompted for a new
value for that financial value. If a function
key is selected, a new value is calculated for
that variable holding the other four variables
fixed. | have noticed that sometimes a user
gets confused and presses a number key
when he really wanted to press a function
key. If this is a problem, code can be added
to calculate a new value whenever a “’C" is
pressed at the data entry prompt.

Whenever the red key (F7 on the H/Z-100)
is pressed, the while loop condition will
cause an exit from the program to the operat-
ing system.

Screen Control

Three procedures (menu, line25, and locate)
demonstrate essential programming
methods for achieving screen displays
needed for user interaction. The code for
procedure menu was generated using Ed-
A-Sketch and PIE by The Software Tool-
works. MBASIC source code generated
using Ed-A-Sketch is easily edited with the
recording feature in PIE. Simply change the
PRINT to write, replace double quotations
with single quotations, replace semi-colons
with commas, add the parenthesis, and ter-
minate each write statement (except the last)
with asemi-colon. Alternately, you can code
the menu manually. Don’t forget to add the
begin-end. ESCape sequences and graphic
symbols employed here are adequately de-
scribed in your Heath/Zenith hardware
manuals.

The first write statement in procedure line25
isincluded tofirst clearthe 25th line and turn
off the cursor. (This is really not necessary,
but a recommended practice to ensure a
clean display). The second write statement
re-enables the 25th line and positions the
cursor on the 25th line. Subsequent write
statements paint labels, in reverse video, for
the appropriate function keys. The last two
write statements provide ESCape sequences
to position the cursor on the prompt line of
the menu, turn the cursor on, and enable the
block cursor.

The procedure locate is really two proce-
dures built into one. It will provide a blank

line in reverse video, with the cursor on the
leading edge. The leading character position
of this line is specified by the line and col-
umn variables, while its length is specified
by the variable spaces. If you wish to locate
the cursor without the blank line, assign
spaces the value of 0 or less. You will find a
very good description of the ESCape se-
quences for direct cursor addressing on page
5-8 of the H89 Operating Manual, a not-
as-good description on page 10.42 of the
H100 Technical Manual, and a rather poor
description on page B.14 of the Z-100 User’s
Manual.

Function Keys

Escape sequences provided by the function
keys are defined on pages 11-16 and B.19 of
the H89 and H100 operating manuals, re-
spectively. The repeat-until construct in the
procedure inkey returns a one character
string from the terminal. The until condition
used here allows the ESCape character to be
passed through and the ch variable only
takes on the printable character. The write
statement cleans up the display by backspac-
ing and deleting the printable character.

Function key decoding is handled by the last
six of the twelve selectable actions in the
case construct of the procedure entry. Func-
tion keys F1 through F5 are used to call the
respective routine for calculating the desired
financial variable. The red key (F7 on the
H/Z-100) satisfies the while condition in the
main program, resulting in program termina-
tion and exit to the operating system.

1/0 Methods

The remaining procedures and functions
(inchr, inchrl, inchr2, newvals, and ctor)
handle all the input and output data manipu-
lations. Inchr, inchr1, and inchr2 are very
similar and could very well be packaged into
one unified procedure. For the sake of clari-
ty, however, | have elected to treat them
separately. These procedures are examples
of what can be accomplished with Pascal to
achieve user-friendly and bullet- proof pro-
grams. Inchr2 allows the user to enter nu-
merical data in a character format, with the
option of including commas, decimal point,
sign and dollar sign. Bullet proofing is ac-
complished by ringing the bell, backspacing
and erasing the character not included in the
allowable set. Data entry is automatically
terminated on the following conditions: (1)
when the number of characters reaches a
limit set ty the const MAXSTR, (2) when the
number of digits after the decimal point are
equal to the const POINTS, and (3) when
eoln is TRUE. Inchr and inchr1 differ from
inchr2 only in the string size permitted,
specific characters allowed in the set, and

conditions for terminating data entry. Re-
writing these procedures as one unified and
more general procedure would be a useful
exercise. This can be accomplished by sim-
ply passing variables from the calling state-
ment for the non- nominal allowable charac-
ters, MAXSTR and POINTS.

The Financial Equation

Five basic variables are required to describe
most time-valued financial transactions:
time period, interest rate, payments, present
value and future value. A unique equation
describing the relationship of these five vari-
ables is:

(pv + c)*a + pv + fv =0

where a = (1 + i)tn - 1
b = (1 +i*x)/1
c = pmt*b
fv = future value
i = pffective interest
rate per period
n number of payments
pmt periodic payment
PV present value

x 0 for ordinary annuity
(payment at end of each period)
x = 1 for annuity due (payment at

beginning of each period).

o 00

fv,pv, and pmt take on positive values when
money is received and negative values when
money is paid out. For example, if pv is
positive for amount received and fv is zero,
then pmt must be given a negative value.

Financial Algorithms, Procedures, and
Functions

The relationship between effective interest
rate per period and the nominal annual in-
terest rate is described by either of the fol-
lowing two relationships:

nal + of*(1 —(1 + {)+(pf/cf)) = 0O
for discrete compounding

and

nai - ln((1 + 4i)}4pf) = 0 for continuous

compounding,
where
nal = nominal annual interest rate
of = compounding frequency per year
pf = payment frequency per year.

A conversion to i from nai, as supplied by the
user, is accomplished by function effint. An
inverse conversion is performed as the final
step in the procedure for calculating interest;
this might have been coded as a separate
procedure in order to build a more universal
library.

When the payment is zero, the financial
equation yields a solution for the effective
interest,

i = (fv/pv)t(1l/n) - 1

REMark « June « 1984

83



Otherwise, interest must be calculated by
iteration using an initial guess. Newton’s
method is applied in procedure interest
where convergence criteria is given by de-
claring tolerance as a constant. The initial
guess is calculated by procedure guess.
There exist other algorithms for computing
an initial guess, however, this one is simple
and reliable.

The remaining procedures numperds, pres-
val, futrval, and payment are solutions to the
financial equation for calculating the
number of periods, present value, future
value, and periodic payments, respectively.
Standard Pascal does not provide for expo-
nents and therefore it is necessary to imple-
ment the function power. Numeric prob-
lems that need to be avoided are In(ERRO),
divide by ERR1, exp(ERR2).

As usual, the mathematical algorithms and
“‘number crunching’’ part of the program do
not require many lines of code. There are,
however, a number of different calculations
to be made. These same calculations are
required for a wide range of different finan-
cial applications and analysis procedures.
To name afew: amortization schedules, var-
ious types of lending and leasing, residential
home buying analysis, rentor buy residential
analysis, income property analysis,
mortgage pricing, etc. The virtue of Pasca!
programming structure is that one may im-
plement a library of these functions and pro-
cedures and then, using the same proce-
dures, it is a rather easy task to prepare vari-
ous programs for different analyses. The ap-
proach is similar with BASIC, using sub-
routines and GOTQO's. The line numbering
requirement, however, makes it much more
difficult and, to say the least, it sure can
become rather messy.

Using the Financial Calculator

FINANCE.COM is a machine code program
that will execute directly from the CP/M
command line.

When the financial menu-table is first dis-
played on your screen, default values will be
displayed for each of the financial variables.
Any or all of these values may be changed by
pressing the respective number on the
keypad, and then entering the desired value
on the prompt line.

When entering data, you may include com-
mas, $-sign, %-sign, and decimal point
where it is appropriate. Corrections can be
made at any time while the cursor is still on
the prompt line; use either the backspace or
delete key. The backspace key will not clear
characters from the screen as the cursor is
moved back; they will be removed as you
type over them. The delete key will clear

characters as it backs up.

The new value will be entered into the fi-
nance table when the return is pressed. It will
not be necessary, however, to press the re-
turn if you enter the maximum number of
characters. in this case, when you enter the
last character, the computer will ring her bell
and put the number into the proper pigeon
hole.

When you are satisfied with four of the five
financial values in the table, press the ap-
propriate function key and obtain the solu-
tion for the fifth variable. The computer will
then display her solution in the respective
pigeon hole. WARNING!! If you do not obey
the sign convention, she will display a DATA
ERROR message. She may also display this
error message for unrealistic transactions
which would otherwise result in numeric
error conditions.

Figure 1

program finance;

If avalue is too large for the display format, a
line of asterisks will be printed on the screen.
Thishas not been a problem for us poor folk.

Default values are defined in the source
code of procedure data. These values cannot
be changed without either this code and a
compatible compiler or a suitable patch.
Sorry, | have not determined where the patch
should be made in the program.

This program is for use by HUG members
and readers of REMark. If you find any bugs
or have any suggestions, | would appreciate
hearing from you.

Conclustion

This is a useful and practical program in its
present form. There are several refinements
and enhancements, however, that may be
added as useful exercises. The procedures
inchr, inchr1, and inchr2 can be consoli-

{ EIGENWARE TECHNOLOGIES, Karl L. Remmler, Prop.

13090 Saratoga Drive, Saratoga, CA 95070
(408) 867-1184
For reader's of REMark }
const
BELL = chr(7)
BS = chr(8)
DEL = chr(127);
ERRO = 0 i
ERR1 = 1E-6 H
ERR2 = 87 ;
ESC = chr(27) ;
SP = chr(32) ;
type
string = array[-1..13] of char;
var
n,i,nai,pv,pmt, fv,pf,cf : real
ch : char 3
s : string ;
continuous : boolean;
x,flg : integer;
(*$I b:ols *)
(*$I b:data ")
(*$I b:menu *)
(*$I b:1ine25 *)
(*$I b:ctor *)
(*$I b:inchr2 *)
(*$I b:inchri *)
(*8$I b:inchr *)
(*$I b:inkey *)
(*$I b:locate *)
(*$I b:newvals *)
(*$I b:power *)
(*$I b:effint *)
{*$I b:numperds *)
(*$I b:guess *)
{*$I b:interest *)
(*$I b:presval *)
(*$I b:payment *)
(*$I b:futrval *)
(*$I b:entry *)
begin
flg = 1;

cls;data;menu;newvals;line25;
while (ch<'Q'} do begin inkey;entry;end;

ols
end.

84

REMark « June * 1984


http:FINANCE.COM

dated into a single unified procedure. An
option for calculating financial variables by
pressing the C-key after selecting a menu
number can be added. Finally, you may wish
to add the ““Do you really want to QUIT!!"
second chance.

A menu procedure should be added so that
the user can redefine the parameters (x, con-
tinuous, pf, cf) without having to recompile
the program. Also default values can be ad-
justed by the program for consistency with
parameters selected.

Numerical precision and accuracy might be
improved somewhat. There are other itera-
tion methods and convergence accelerators
that you may wish to experiment with. When
running this program, you will find some
cases that may take an abnormal long time to
converge.

One other useful addition, would be a pro-
cedure to print out an amortization schedule
for selected solutions. This would be han-
dled by adding the appropriate function key
code to procedure entry.

Another useful exercise would be to write a
Pascal program to convert the Ed-A-Sketch
generated MBASIC to Pascal source code.
Reference (4) can be consulted for some neat
methods to accomplish this.

I have one final comment on the Lucidata
Pascal. Since it is sufficiently standardized
with respect to many other implementations,
1 find the conversion to other systems rather
trivial. My experience with JRT Pascal is not
as easy.

References

(1) Jensen, K. and Wirth, N., “"User Manual
and Report”, Springer- Verlag, Berlin, 1974.

(2) Fale, H.E., ""Pascal Corner - Part V",
REMark, Issue 29, St. Joseph, Ml, June 1982.

(3) Grogono, P., “Programming in Pascal”,
Addison-Wesley Publishing Co., Inc., Read-
ing, Massachusetts, 1980.

(4) Kernighan, B.W., and Plauger, P.J.,
““Software Tools in Pascal’’, Addison-
Wesley Publishing Co., Ltd., New York,
New York, 1981.

Figure 2

procedure cls;
{ olears screen including 25th line
and resets cursor }
begin
write(ESC,'y5' ESC, 'yd'};
write(ESC,'y1' ,ESC,'E ')
end; { ols }

procedure data

{ This procedure contains all the parameter and variable
default values. It could be replaced by a menu procedure
for configuration by the user, writing and

reading the data from a disk file. }

begin
{ initialize }
ch := ghr(0) : {preclude an initial character of q }
{ parameters }
continuous := false ; {continuocus or discrete compounding}
x =0 . {ordinary or annuity due}
of = 12 ; {annual compounding frequency}
pf = 12 . {annual payment frequency}
{ defaults }
fv = 1322 .346; {future value}
nat = 0.1 : {nominal annual interest rate, decimal}
n 1= 24 ; {number of payments}
pot = -50 ; {periodic payment}
pv =0.0 ; {present value}

end; { data }

procedure menu;

{ Created using Ed-A-Sketch and PIE (Products of Software

Toolworks). See text for recommended procedure. }

begin
write(ESC,'E' ,ESC,'x5'):
write(ESC, 'w' ESC, 'H' ,ESC,'J' ,ESC,'G'):
write(ESC,'q' ,ESC,'F' ,ESC,'Y',CHR(34),'<lfanananasa’);
urlte{'aaaaaaaassaano',ESC.'YI<V.ESC.'p',ESC.'CFIN'}:
write('ANCIAL CALCULATOR',ESC,'q ',ESC,'Y$<eanaaaasaaaa'):
write('aaaaanasaaad',6 ESC, 'Yf4fannaananananananannaaaaaaasanan’);
write('aaaaaaac', ESC, 'Y&4<1> NUMBER OF PERIODS',ESC,'Y');
write('&0",ESC, 'YAT ' ,ESC, 'Y&[ ',ESC,'Y',CHR(39), '4vaaaaaa’);
write('asaaaaaaaaanaanaaaaabamaanaaaaaat' , ESC,'Y(4');
write(ESC, 'C<2> ANNUAL INTEREST RATE',ESC,'C');
write(ESC,'Y(5S ' ,ESC,'¥([",ESC.'Y)4vaaanaaaaa');
write('aaaaaaaaaaaaaaaaabananaaaaaaat' K ESC,'Y"4',ESC,'C');
write('<3> PRESENT VALUE',ESC,'Y*0',ESC,'C');
write{ESC, 'Y+4vaaaaaanaanaaaasaaaaanaaaaaanbaanasaaaaaat’);
write(ESC,'Y,4', ESC,'C<d4> PERIODIC PAYMENT',ESC,'Y'):
write(',0',ESC,'Y,[',ESC,'Y-4vaaaaaaaaaaaaasanaaaaaaaaa');
write('aabaaaaaaaaaaat' ESC,'Y.4' ESC,'C<5> FUTURE VALU');
trlte{'E',ESC.'Y.D“,ESC,'Y.[f,ESC.'Y/4ansssaaaaan'J;
write('asasaaaaaananaaauaaaaasananad', ESC,'YO<',CHR(S4),' TO').
write(' ENTER VALUES -—> ' ,ESC,'pw',ESC,'G',ESC,'q'):

end; { menu }

procedure 1line25;
{ paint function key labels on 25th line }
begin

write(ESC, 'x5' ESC,'y1'):

write(ESC,'x1' ,ESC,'Y8B ');

write(' vy

write{(ESC,'p',' Fi-N ',ESC.'q'.' '):

write(ESC,'p',' Fe2-I ',ESC,'q',' '):

write(ESC,'p',' F3-PV ',ESC,'q'.' '):
write(ESC,'p',' F4-PMT ', ESC,'q'.' '):

write{ESC,'p',' F5-FV ',ESC,'q',' '):

write(' ',ESC,'p',' RED - QUIT ',ESC,'q'):
write(ESC,'K'); { RED => F7 for H10O }
write(ESC,'Y',chr(48),chr(83));
write(ESC, 'y5' ,ESC, 'x4")

end; { line25 }

REMark * June » 1984

85



ImA
2t

TeqeT

{ % jo Jemnd 0} £ esyue: }

Teed: (Teel:x'A)Jemod uwoTIOUT]

{ sTeameu } pue
pue
o= AL
- S P o Lt L ER 2T
' SNOLLOTWM0O SNVN — HOMME VIVd, )ejjis
“l.d,"osa}ertaa
‘{o*T'6T)e3eo0T
ujldeq esTe
pue (,Q,'053° D, 083" .4, ", 4, 058)83TIA (02 LT)9IBO0T
‘(g:6:a) )@37ial(0D°0G°GT)0eIWOOT
‘{zg:g:ymd)eytaal (006 €T 03820
t(2:g:ad )e1TIa: (00§ T )e3R00T
(Z:6:PY )e3Timi(0°2C°6 Je3E00T
¢ {oigiu )eyTJal (D Eg L)ewwoot
‘00T « TET =I PT
uideq ueyy (0<B1J) J¥
utdeq
el :PT JEA
{ ‘eygqej-nuew jo se{oy ucedAjd U] SeNTETA AIU SIUTSJ }
'sTeameu einpeoccrd

{ #3mo01 } ‘pue
{\b,"0sE"2°T" .k, '0SF)er74
‘pue
{, J)937Ia op sedwds 03 T=:F JOj
! (,d,"083"0°1" .k, '053 03718
ujBeq ueyl (p<eseocwds) J§
{umnTO4 TR ) IQD=:2
! (euyT+IE)ayo=:T

ugdeq
‘iedejur: 3
. JEY2:I0°T
IBA

{ -08pPTA 6SJeAS) UT SUTT WUBTY @Yl INOY3ITA NG 'UTNTOD PUER U]
peijioeds ey} 3% PejEsO0T [TT3S S} JOSINO @y} 'SSe] JO OJBZ JO ONIEA E
ueaTd 57 seowds j7 -seouwds erqETIEA 8yl Aq ueajd sy yjduer s3I se(qe
—jJeA UENTOD PuU® BUTT #y3 £q pejjyoeds uwoypijsod FuypeEeT 6yl UO PeIBOCT
10SInD 8y} Y)ITA ‘0COPTA BEIGASI UT OUTT WUR[G ¥ Sepiacid einpeooid sjyr }
:(JeBejuy:seoeds ‘umn{oo ‘euiy)eiwc0T esnpesoad

{ Keutp } ‘pue
(730 °'sg)e1tia
‘{os3<U2) TTIUN
pue
(yo)prea
utdeq
Jueded
ujdeq
{ -y3nosy3i ssed 01 Jeijowlwyo ede)sy eyl ButworIw
‘{eufEle} ey} WoJdJ J8I0uIRys euo isnf suIniey }
‘fequy exnpeoccad L3

{ -ei1v1 3sesejur 10 Indur piecqley }
((Autils s JRA)TIYOUT esnpeosord

{ zayouy } ‘pue
(T+ SINIOd<¥) Jo (YISXVWN=<T) J0 (uroe) T1IUn
TH=:3 ueyl (o<q) JT
T=:y weyy (. .=[1]8) I7
Ipue
T-H=:% !T-¥=:} !d$=:[%1]e
‘(sg'ds s TTAg) eI TIA
oydeq weyy ([,6,° .0, 'dS ' TA'SE .~ "+ " %" "] UF [¥]8) 30m ¥
ipue
T—H=Iq (T-F=IF !dS=:[Fl= !T-H=I¥ !§-F=:F !dS=:[7]s
‘(sg'ds’'sglertan
uyBeq weyy (13a=[(1ls) J7
‘pue
I-d=1 T-F=:F 'dS=:[F]s !T-H=iy T-y=:F !ds=:[1]s
uyleq ueyi (gg=[71]s) Jv
([v]ls)prea
‘pue
T+T=:7. (1138 "dS) 01T
ujdeq op T>7 eryya
IT4T=:T
1ueded
D=Ni0=:T
‘ds=:[1]s op £ 03 [-=:7 J0J
ujdeq
(IeBOUT - N T
Jwa
2 = SINIOd
£T = HLSKXVN
}5U0D
{ "semmo0 puw § ujejuod 03 jnduj sSmo[[Y -enyea juesead
pur entea eJning ‘juewfed oy jnduy pirwoqley }
(Butiye B JeA)ZIYOUT eanpecoad

{ 1030 } ‘pus
UATE 4 J = 103D
‘0T/3 = 1 0P ¥ 0% T =: J JOJ weyl (0 < ¥) J¥
‘pue
F+T=73

T4+ 4 =¥ ueyy (31— < A) J¥
‘g — ([7]8)pa0 + 2 4 DT =: a
utdeq weyy ([.6, " .0.] ut [T])8) I¥
0= § uweys (, , = [7]8) 3%
‘f— =: uldys uweyy (,~, = [7]8) J%
utdeq op (T + YISXVW > T) eTtya
T o= HATE (f- =1 Y T = F !0 = X

utdeq
:1eBejuy @ uBys 'y "7
: 1881 I
JBA
2T = HISXYM
15U00

{ "eemmod puw ‘§'§ €% UYINS SJI910RJEYD urejued Lem Aojiie eyl
‘reel edfy v 03 Jequnu B jo uotimviueseldes Jeyo ediy v sjieauod }
treea : (Buldys ;| 5 JWA)IO00 WOFIOUNG

—

86

REMark * June « 1984


http:wrlte(BELL.BS.SP.BS
http:wrlte(BS.SP.BS

b

{ ssend } !pue
Hl{u)absgugjud) /aj )sqe+ (A}, jud)sqe=:|
{{aJy)sqe+(ad)sqe=:4a1
utdeq
ITe8lial
JdEA
{ ®jel }SOI8}UT GATIOSJJE JO UCT}NIOS BATIRIS}T Joj ssend [eyjjul }
'ssend eanpesoad

{ spiedmnu } !pue
B4
- =i A1
‘T
iz 0303
‘17 0308 este
pue | 0308 esye dme} =: u ueyy (O¥uI<dmey) Ji
Hrriurfleur = dmey
ueyy (TuMHE<e) Ji
(adsn)/(aj-0) =: @
qeimd =: o
T/ {xaT+E) =1 q
dmey =: T
utdeq ueyy (Tu¥E<dEmey) Jj
4 (feu)yusjje =: dme;
: g 0308 ueuy (o > 31J) Jv
utdeq
TRl e ‘o 'gq'deey
IBA
‘21 1eqel
{ "u,be eousuj; woJj siuemfed jo Jequny }
‘spiedunu eJnpesosd

{ aurgje } ‘pue
C
‘pus - =: 3
LT o=l JuRjje
ujdeq esye dme} =: JUTjje ueyl (odu3<duwey] ji
=(Jdsyo (JoSTeust) Jaenod =: dumey
esTe T-(jd/yeujdre =: dwey weyy (snonugpiuos) Jy
‘1T 0303 uweyi (0 > B13) I¥
uydeq
'Tees : dmey
IBA
‘T oTeqET
{ 3SeJejuf eaf}lejje 0} }SeJejU] [ENUUe [RUTEOU §}I8AU0] }
ITReS ([Rel:jRU JEA)jUTje uoTIoUDg

{ aemod } !pue

b A

- = 13 T

iz 0303

‘1 0302 esTe (pise)dxe =: iemod wmeyy (Lg=>pBiRm) JT

!T 0108 esye (£)ul,x =! pBIv uey} (OwWHIE<A) JT
uydeq

‘Teeg : p3aw

{ ayouy } !pue
(YISX¥YN=<T) J0 (ufgoe) TyIuUn
‘pue
T-T=:% 'ds=:[1]s
‘(sg°'ds’'sg TI@g) el A
utBeq ueyy ([.6. ".0.°'ds'13a’'sa] uy [7]s) 3ou ;3
‘pue
1-F=:1 'ds=:[1]s !T-t=:7 !dS=:{71]s
risg'ds'sg)eltia
utBeq ueyl (73d=[7]s) J7T
‘pue
¥=1=:F dS=:[T1]& !}-T=iT !dS=:[T]8
uideq uweyy (Sa=[1]s) 7
“il1]s)pues
‘pue
T+T=170 (7138 "dS) e Tia
utdeq op T>7 eTTua
ITHT=TF
jeedes
‘0= 7
‘ds=:{1]s op €T 031 T—:T 10}
utdeq
raeBejuy : 7
awa
: £ = WISXVN
}5U0D
{ ‘sjuemdrd jo segqunu ioj jnduj piwoghey }
!{Burays ! 5 JBA}IYOSUT einpesord

{ tagouy } ‘pus
(T + SINIOd<M) J0 (HISYVA=<T) J0 (uroe) Triun
T+i=:¥ uweyly (O<H) JT
T=:9 woys {.'.=[%]%) 3%
pue
T-H=:y [T-3=:7 !ds=:[%]s
'(sd'ds 'sd 1734 )83 TiA
uyBeq weyy ([.6. ".0.°dS"TH@Q'SE . . .%.] uy [T]ls) 3jou j§
‘pue
I-A=i% (T-T=:T !dS=:[T1]§ !T-H=:y [T-7=:7 Ids=:[1]s
‘{sg'dsSE)eiTia
utdeq ueyy (THa=[tls) IT
‘pue
T-H=:% [T-¥=:F !dS=:[%]8 !T-¥=:H !T-T=i7 IdS=:[Tls
uyldeq ueyy (sa=[7]s) J¥
{[v]s)peea
‘pus
T+1=:7! (778 'dS)e17ia
ut3eq op I>T OTTUM
THT=F
jeedas
O=HI0= T
‘ds=:[1]s op €1 03} F—=:7 J0J
ujdeq
rxeBejuyr - ¥ ‘T
JBA
£ = SINIOd
9 = MISXVR
}8U0Y

87

REMark * june * 1984



|

{ Teasead } ‘pue
‘2
- = BT) T
‘g 0302
T+e)/((0e®)+AJ)— =:ad
: qsiad =: o
: B/ (%a34%) =2 q
: T-(u"j+7)remod =: ®
‘T 0303 esTe dmey = T uey} (Tyud<dmey) JT
! (teu)jupjje =: dmey
' g oyod ueyy (0 > B1J) i7
ugdeq
iTeed @ 0'q e dme}
IBa
‘2T 1eqET
{ -uotjueaucd uBys 10j jxe} eeg
‘u,be ecueup) @Wol) en{ea jueseld }
i Teasexd eanpescrd

{ isesejuy } ‘pue

8
- =X A1
S |
‘z 0308
{ hh“ﬂ”}Wnrwna ‘7 0303 esTe pue
ue
V(TIE e Tae BSTAIeylo pue (1-831)efo = .ﬂd=v
(b, '0s3 ' ONILLIND. *,d. 7083 ._c“““p N 1(30/7d' T+T)z0m0d =i A}
: MM”lMuM .b.__ ujdeq esye
i e pue
: [easead P T- =: BJ esTe (al)jul =: TRU ueyl (OWHd<al) JT
“amuuugna Fada (g y+T)demod =1 a3
.muuonlﬁw ST - ut8eq
) ) lpue uays [(snonugiuos) JT
e { “fum 01 § reauog )
5. utd ueyy (T
(¥, ‘083", b.’'0g3", "3no pred enyuva,|erfia vieq ueyy ( mzuﬂwh-uﬂ
b AREAERENEN ugﬂum.",wnﬂﬁm;.mﬂﬁﬂsmmﬁom.p.ﬁ.uwﬂ”ﬂn (30NVNE10L>(23/T5)5qR) TT3an
B It e HEE. m.ﬁz..m. o H EATA S o S T
Ho"v er)e3waoy {3/ 10a%)=((T4T)/(F4%) o (0+ad) eu) =:2]
‘{6'08'gr)e3ea0] 4 aj+ads(osad) e =:F
ugd - ¢
¥ om P aG . qeiud =: 0
g ‘pus ‘1 0108 esTe 1/(X.T+T) =: q
(E)sonn—=: qmd {)SIGNIY uow) (THME<(¥}SqR) J7
‘{02 6T )e3R00T ‘7 0303 esTe dme} =: ® uweyl (o<31J) JT
‘(.M,'253",b, 083", "3no pied junode, je3Tia ¢ T-{u’(7+7) )iemod =: dmey
‘{, 107 sa7iedeu puw peajeses juemfed JoJ sATITSO4, ", d, '0ST )01 TIN 1uedel
(.M, '0SE", :INNOWY INIMAVA DICOI¥Zd WALNZ, )uieijia e
(0'1°6T)983BO0T utdeq
‘(6’08 mHu“muumﬁ es1e T-(u/7'ad/aj)ieaod=:1 ueys p=1md J7
¥ un._...:._a.v. 'z 0308 weyl (0 > 315) J¥
: ] : utlaq
{s)}1032 wm=¢MN“M”“w“MM““ TReligj 1j'o'q u A}’ duey
. JeAa
‘{.H."0s3",b, 253", 300 ueaTd enyeA, |olTIa ) )
f(, 403 ®ap1w3euU pUR PeAjel9J ETNTEA JOJ eatitsod, .4, ‘oS5 )eyTin *¥0000 mu24:uumnnu
M, 983, (LNNORY 3ANTVA LNESTEd HALNE, jugeltls ‘2°T 1eqel
H0'1 6T )e3Ed0T { ‘u,be 1®
i JOUBUT} WOIJ 3}SJO}UT SeyEINITED }

(608 TT)e3BO0T £74 ‘450103 uf etnpesoad

REMark « June * 1984

88



ZW AR!

Tired of trying to get your latest Pascal compiler to work? Your
spreadsheet won't compute? Sick of syntax errors in line
46587 It's time to take a break and indulge your fantasies of
global domination with ZWAR.

ZWAR is a two player strategy game of world conquest. The
screen displays a map of the world and the Soviet and
American cities. You must decide what mix of the nine
available weapons systems you will build to outwit your
enemy. You can destroy his cities with ICBM's, or attempt to
capture them with an invasion, thus gaining their production
facilities for your own use. Each weapon has its strength: car-
riers and destroyers for sea superiority, ABM's for defense
against missiles, jets for quick response, satellites for spying
on enemy activity. The possible strategies are nearly endless.

So if you're getting tired of humdrum computing, grab a friend
and try ZWAR. It's your chance to make history.

ZWAR, $19.95 + $1.50 shipping. For H8-H19, H/Z89 or H/Z100
systems (color graphics on the Z2100), 56k, and HDOS, CP/M, or
CPIM-85. Specify hard or soft sector disk. Free catalog
available.

APOGEE SOFTWARE

Box 15124
Savannah, GA 31416 (912) 925-3765

e Software Toolworks presents:

THE COMPUTER CHEF " SERIES

OH, THAT LOOKS NICE.
LET'S SCALE IT FOR FIVE
PEOPLE AND PRINT IT OUT.

ALL RIGHT, COMPUTER CHEF, |
1 DIDNT GET TO THE MARKET
TODAY, WHAT CAN | DO WITH
A HEAD OF CABBAGE AND

A CAN OF SPAM?Z

HEY, MOM! HOW
- DO YOU COOK SPAM

NOW WHERE'S MY RECIPE
FOR CHOCOLATE MOUSE!

THE COMPUTER CHEF SERIES
ALSO INCLUDES "BEST OF WoK TALK
AND 'WHATS FOR DINKER.
ITS AVAILABLE FOR CRW, IDOS
MO HDOS AT MOST HEATH / ZENITH
DEALERS, CALL OR WRITE
FOR FREE 41 PRODUCT CATALOG
AND NEAREST DEALER.

A
————

cl hmm' from over 300 a
“r

procedure payment;

{ Periodic payment from finance eq'n.

(1+i®*x) /1

:=power(1+i,n)-1;
:=pmt*b

a
b
[+]

- -
o o
- -
o o
b bl
] o
(/] 4]
—- —
L] L]
<N
- % -:"‘“ B8
@ e
p e . g 2
o [ Fel o O -0
-l 43 v - o - o, .
e o s o g o+ o
= - - o = -
L =] B [~ ] =]
= - B o me—— - o= g
= o — @ _ L Qo -~ @
=3 b oo | - o o
(3] o e 5 5 O . =
g a o g — g —
= . D —— = — - - o B ] L
bl — P e I I ) - —_— oo, b @ a8 d
- L] ¥ 208 +~b 1 > - = ﬂﬂﬁ
] @ ﬂﬁr‘l——-—ﬂ. 3 g 0 . b
'. ToguRnsroLog 53« © 9%
=] Ee] eoﬂ.w-ﬂa g t-‘;a L0 9 =2
o - o Jl B B + — :« B0 > b s - g B
o L] H--QOﬂJNH ol -] o L] ~ @
e - oy < — (™ a, o e - - L= -
® o a, — -3 -0 3 g Ko a2 — -
@ 8 =] e A - o g0 B 8
- e D O S D 8 o ] D S &~ D
3 e e IE ST - B = = A T S T o (L @ o
] L b o Of @0 & ba
o o o 8 1= = @ o o @
v > @ e A

i
[
o
Eal
+
=1
- ‘.
o —_
0 . -
— ]
o - -
@ ] = o
P - [&] =]
[ ] - w -
peg © 5] .
s @ 1) - -
s T (%] - o
- =
o - i
- @ |
o Y | 5] el
° ., =
LSl w o -
o © =] ]
> =] = -]
- B ()
+ O ﬁ &)
o _
o e <] w
= O B =
o @ L — = &
o o [ =] o
o @ — -
- o @ = iy ©
o a 2 3 Il
—
.. 3 guo 2l
> p Seral Soeug
o @ M a = e )
+ - @ - - W0 --ﬁm:
> P = M EENa o - N
o, v;l — ...0.3 mo‘Eo{ BG;EG;-
- Felly- = -5 X —_
. _r, Lo = s 5 A EM =~ n =
o Il o +~ T e e = = [} i R -
+ . = g g~ e b D D — @ — Mo D— D b
= 54 o o« 0@+ + 0+ K @ QD o
o .- b + o S Mo &g 00 P g -0
— N~ = [ S = 00— 00T 0O 0w 00"
& -~ < = p & ] 00 LORE - 00CkKLOEG
o = o e - A @
e e Lo I = o - - =
> O D 4 B0 o 2]
huﬂ-—!:\l‘a o_ql-..-;ing— - -
o
= hhhﬂ
@ o= 0 4

REMark * June « 1984

89



e Ll o

OKIDUMP.BAS

Timothy Ross
1716 S. Soland, Apt. 30
Las Cruces, NM 88001

OECRERSE TN VELOUTTY BUE T0 RIR RESTSTRACE

| L I L
DISTANCE#S. 61n

pe
oy

Oh boy! My first article! I've been reading REMark since October
1983 and have been impressed by the articles and letters I've read. In
reading those letters | have noticed that there are at least three people
out there, myself included, who run an H/Z-100 with an Okidata 92
dot matrix printer. So | figured that if there’s three, there may be four
or even five people with a similar setup, people who might have a
use for this program.

I’'m attending college right now, majoring in Electrical Engineering.
I've been exposed to FORTRAN and BASIC and have a working
knowledge of the two languages. | imagine that | will be required to
use these languages in future courses as well as in my professional
career. | anticipate the need to use this computer for graphing
functions and, for fun, drawing pretty pictures. Last winter, during
semester break, | found myself staring at my “Z”, running simple
little programs which place shapes all over the screen and wonder-
ing how to get a printed copy of these graphics screens. | looked in
the HUG software list and, to my dismay, there was no screen dump
utility specifically for my Okidata 92. Curses! Multiple colorful
four-letter words! | had a bit of time on my hands, video screens filled
with neat stuff, a stack of manuals, a silent printer, and a large
measure of curiosity. Let’s take a look at the monochrome screen, the
manuals, and the Okidata 92.

The Screen and the Printer

The screen is made up of dots, thousands of them. The Okidata
printer prints dots. There’s got to be a way to make them work
together. The video screen is 640 horizontal points by 225 vertical
points. This yields an aspect ratio of 640/225 or something like three
dots horizontal for every dot vertical to display a square. This pro-
gram will actually print 2 dots in the vertical direction for every
horizontal line. In the graphics mode, set at 10 characters per inch,
the Okidata 92 will print a line 7 dots vertical by 480 horizontal. To
make the printer work it must be fed seven-bit patterns, the least
significant bit being the top dot printed, the most significant bit is the
bottom dot. In order to get all 640 video points to the printer (re-
member the Oki is only 480 dots across), it is necessary to print
sideways, taking a slice of the screen starting at the upper right corner

and scanning down to the bottom right of the screen. This yields a
slice 7 dots wide and 225 dots high. This information must be
formatted for output to the printer. Then another slice is taken,
starting seven dots from the first. This slicing technique is continued
all the way across the screen. The last column is tricky because it will
be only 3 dots wide, (640 MOD 7=3).

The first problem | encountered in writing this program was how to
getthe information from the screen into a format suitable for manipu-
lation by a beginning programmer, myself. The Heath-Zenith manu-
als are loaded with information about the screen. | spent many an
hour reading the H/Z-100 technical manual, especially chapter 4,
The Video Logic Board. There is a series of formulas on page 4.15
which, upon interpretation and comprehension, allows one to PEEK
and POKE the video screen with gusto. Video memory can be
accessed 8 bits at a time in 8 bit increments. Since the Okidata
requires 7 bit patterns, the video memory must be stepped through in
7 bitincrements. POKEing the video screen presents a few problems
such as combining the MSB bit of one video byte with 6 bits of the
next byte, and 2 MSB bits of this second byte with 5 bits of the third
and so on. The problem is approached only with massive amounts of
intricate number crunching and brow wrinkling, a bit beyond me at
this stage, I'm afraid.

Then there isthe POINT command. POINT returns the color attribute
of asingle pixel at a specified location. | wrote a routine which used
the POINT command to read every pixel on the screen, one atatime,
convert the returned value to a power of two, and add the values so
attained for seven pixels across, corresponding to the seven dot
height of the Okidata 92. | then sent this number to the printer and
stepped down one line where my program took the next seven
pixels, one atatime. And so it went, down and across the screen. The
program worked, sort of, but took over two hours to dump a single
screen. | realize this is an impressive figure and probably breaks
many records, but the program is not for sale, don’t ask for a copy. |
calmly sat down and calmly screamed, “‘There’s got to be a better
way!!”’

There is a better way, the GET command. The GET command trans-

90

REMark ¢ june - 1984



{5 13 M= 14
{= 25 =26
€2 37 )(= 38
{= 49 ¥ Se
{8 B! MwEZ
€2 73 3z Ta
(3 83 X386
€2 97 )(:z 9a

s 128 ME

He 1S5
M= 27
{2 39
3= 51
I{®E3
ME TS
e a7
1z 99

10 LPRINT CHRS(3) ;
20 FOR X=0 TO 127

30 LPRINT STRINGS(4,X)
40 NEXT X
50 LPRINT

- 18
= 28
= 40
¥= 52
M. Be
M= 76
M 88

3= 17 3= 18 (T 19 M= 2@
MW 29 p{w ID (™ I . 32
ME 4L ME A2 IE A3 Y= 44
32 53 M= 54 {2 55 e 56
MZ E5 MI BE ¥I &7 M= &8
MET? M= T8 M2 79 M. BO
Ma B9 )F I MHE 51 e 92

;CHR$(3) ;CHR§(2)

@ 3 1 =2 M3 M- 4 ¥® 3 =& MH*T M-8 M0 9

ME 21
M 33
MHE 4%
Ha 57
M E9
M 81
MHF 22

o S8 | (o

M= e
M= 22
M= 34
M= 4B
= 58
Mz D
Mz a2
Mp 9%

CHR$(3);

M 11
He 23
3= 3%
148 47
s 59
Hz 7
33 83
bR -7

3Lz 190 142 101 M= 1BE M2 123 e 104 3{Z 10T M= 106
189 3= 118 {2 111 X 112 {2 113 33 114 M2

H=12 )

M= 24
M= 38
e 48
He 52
M= 12

b

e

Hsz 84 )

3. 96
Mi 107

115 Ma 116 M3 117 M

118 2 119 Me 12@ ¥a 121 )& 138 M 123 Mo 126 G 125 20 126 X0 127 (

This routine prints all dot patterns from 1 to 127. Notice each
character is printed 4 times, except for #3. Also notice #9.

fers the attribute information for each dot in a rectangle contained
within the boundaries defined by the specified points and places this
information in an array. What a mouthful! The array should be
INTEGER. There is a formula on page 8.22 of the Z-BASIC manual
which gives an idea of the size array required. It is reproduced here:
Y, where X = the number of columns to be stored and Y = the number
of rows to be stored. Lets see: X=7, Y=225. That works out to 675 |
think. | was a little confused here so | wrote a little program which
created an integer array of 1000 elements, DIM A% (1000). | wrote
the number 99 into each element of the array. | then filled the screen
with reverse video SPACE's so the whole screen was lit. Time for a
test. GET (631,0)-(639,224),A%. My program then printed each

element of the array. Guess what, only 340 elements (DIM A% (339)) -

are needed for this array. The first two bytes (the first element,
element 0) of the array gives the X dimension in bits, minimum 24,
the second two bytes give the Y dimension in lines. The rest of the
array gives the data which specifies, in 2's complement numbers,
which bits in the individual color planes are active. On page 8.27

This figure shows a screen dump without adding 128 to every

character.

*THIS IMAGE IS THE RESULT OF TWO PROGRAMS, CISCLBOX.EAS AND 0 IDUME, BRS

]
Ly

lrll'
|
I
\

f{ i

!
l'l
[}

A
T
f'n’"'.u'.l'..fll"-"f'f"
Tijfrlll ;’I'"II::I(
it
|
|

7
. il

ol
S

f‘,'.'rr

This figure is fixed by adding 128.

REMark = june = 1984

91



and 8.28 of the Z-BASIC manual is a program which will give an idea
of what is happening in the video planes for a single character. |
won't reproduce it here but suggest that a FOR/NEXT loop be added
after line 260 which would print each element of the array P00%.
Seeing the visual representation of the array in conjunction with the
array’s numerical contents greatly eases the job of interpreting the
video screen.

Element 0 of the array specifies how many pixels horizontally in the
three color planes, in multiples of 8, have been stored in the array. If
there are less than eight bits stored, meaning that if the width of the
slice being stored in the array is less than 8 dots, the rest of the byte
will be filled with zeroes and left justified. The minimum value of
element 0 is 24, which corresponds to 8 bits and three colors.
Element 1 specifies the height of the slice. In the case of a single
character there would be 9 lines. For this screen dump there are 225
lines, so element 1=225. Things start getting sticky. Element 2 of the
array, and every third element from then on contains information
about the blue and red planes. Element 3 contains information about
the blue and green planes, the least significant byte being the green
plane, line 0, if the top of the screen is being referenced. Element 4
holds red and green data, the most significant byte contains the green
plane information, line 1. Explaining this is tough stuff, so here’s a
diagram generated by the program from the manual, with my addi-
tion, the array dump.

BLUE RED GREEN ARRAY CONTENTS
11111111 11111111 ocoooooo pPOCE(0)=24 3 COLORS, B DOTS
11111111 11111111 00100010 POOZ(1)=9 9 ROWS HIGH
11111111 11111111 00100010 POOZ(2)=—1 11111111 11111111
11111111 11111111 00100010 POOF( 3)=-256 11111111  000000CO
11111111 11111111 00111110 POOF( 4)=8959 00100010 11111111
11111111 11111111 00100010 PODE(5)=—1 11111111 11111111
11111111 11111111 00100010 POOR(6)=-222 11111111 00100010
11111111 11111111 00100010 POOR (| 7)=B959 00100010 11111111
11111111 11111111 00000000 PODE(8)=—1 11111111 11111111
POOR(9)=—194 11111111 00111110
POOZ( 10)=8959 00100010 11111111
character = 'H* POOR(11)=-1 11111111 12111111
POOR(12)=-222 11111111 00100010
POUE(13)=8859 00100010 11111111
POOE(14)=~1 11111111 111311111
POOE(15)=0 0O00D00D 00000000
MS BYTE LS BYTE

The pattern is easy to see. Since | am using a monochrome version of
the H/Z-100, only green plane information shows up. In a color
version there could be information in any of the planes, depending
upon which colors are active. It is apparent that in this case | needed
the least significant bytes of elements 3,6,9,12,15, ..., and the most
significant bytes forelements 4,7,10,13, ..., of the entire 340 element
array. If we AND element 3’s contents, -256, with 127 we get 0.
Element6,-222, AND 127 = 34,00100010 binary. (Element 4, 8959
AND 32512)/256 = 34, 00100010 binary. See this program’s list-
ing, lines 470 and 480.

most significant bit, the MSB, is 1 then the number is negative. If the
MSB = 0 the number is positive. Invert this binary number and add 1
to it. For example:

-222 = 1111111100100010

inverted = DOODOOOD11011101

add 1 00000000COODOC01

0000000011011110 = 222 and the si1gn was negative,
from the MSB

binary

result =

This method also works in reverse,

There are a series of special control codes which the Okidata 92 uses
to control its operation. To enter the GRAPHICS mode a CHR$(3) is
used. The sequence CHR$(3);CHR$(14) is a graphics line feed with
carriage return. CHR$(3);CHR$(2) exits the printer from GRAPHICS
mode. The Okidata 92 accepts bit patterns from O to 127, printing the
pattern vertically, LSB at the top. The Okidata recognizes CHR$(3) as
a control code so if there is a /3" dot pattern, 0000011, two of these
patterns must be output for the printer to accept a /3" as a dot
pattern. If only one /3" is sent, it won't be printed and the next
number received may cause strange things to happen if it is inter-
preted as part of a valid control code sequence. See program lines
530 and 720. Eight bit binary numbers may be sent to the printer but
it will not sense the most significant bit. For example, the printer will
not distinguish between a 9" and a “137"" in GRAPHICS mode. The
only difference between the numbers is the most significant bit, bit 8,
corresponding to 128 decimal or 10000000 binary. This is conve-
nient because it appears that when the Z-BASIC interpreter sees a
CHR$(9) being sent to a line printer, it inserts a horizontal tab. And
while the Okidata is in the graphics mode the dot pattern corres-
ponding to a 32 is printed a number of times, the number of repeti-
tions of this “32" bit pattern depends on the number immediately
following the “9”. Sound confusing? It is. The the printed result
appeared to be smearing randomly when a ““9” was sent to the
printer and it took some work to iron this bug out. There is a fix,
however. Since the Okidata does not sense the most significant bit of
the pattern being sent to it in GRAPHICS made, this bit can be set HI
by adding 128 to every number sent out. The H/Z-100 doesn’t seem
to mind. See program lines 470 and 480. There is probably a less
time consuming solution to this problem than adding 128 to every
single character, but it has eluded me.

The final column to be printed presented a new set of problems.
Since this last column is only 3 dots wide, an entirely different set of
numbers is required to manipulate the array. See program lines
610-750. The final array consists of the information from dot column
7 to 0 and lines O to 225. Instead of ANDing element 6 with 127,
AND it with 224 and divide the result by 32. For element 3, AND the
contents with EQ00 HEX and divide the result by 8192. Take a look at
the diagram below, remembering that only the leftmost three dots of
the green plane are of interest.

element 3 element 4
decimal binary decimal binary

=256 11111111 0OD0OODOOO I 8959 00100010 11111111

AND 127 00000000 1111111t I AND 32512 11111111 00ODOOOOC
i

result= O 0CO00COD 0O00OO0O0 | partial, 8704 00100010 0ODDOOOO
|
5 element 6. .. .. L

=222 11111111 00100010 I divide 8704 by 256, 1 00DODDOOU

AND 127 00000000 11111111 | samé as shifting right 8 places

I -

resul t=34 D0O00OCCOO 00100010 | end result= 34 0000CODD DO100C10

Take the least significant byte of these end results and send it to the

printer.

Two's complement works like this: find the binary representation of
a given number, for this program the number is 16 bits wide. If the

BLUE RED GREEN ARRAY COMTENTS
11111111 11111111 00000000 POOZ(0)=24 3 COLORS, 8 DOTS
11111111 11111111 00100010 POGE(1)=9 9 ROWS HICH
11111111 11111111 00100010 POOR(2)==1 11111111 11111111
11111111 11111111 00100010 POOE( 3)=-256 11111111 00000000
11111111 11111111 00111110 POO%(4)=8959 00100010 11111111
11111111 11111111 00100010 POOE(5)=-1 11111111 11111111
11111111 11111111 00100010 PODE(6)=-222 11111111 00100010
11111111 11111111 00100010 POO% (7)=8959 00100010 11111111
11111111 11111111 00000000 POOF(B)=-1 11111111 11111111
POOF(9)=-194 11111111 00111110
POOE(10)=8959 00100010 11111111
character = 'H' POOR(11)=-1 11111411 131111111
POOE(12)=-222 11111111 00100010
POO%(13}=8959 00100010 11111111
POOZ( 14)=-1 11111411 11111111
POOZ(151=0 00000000 00000000
MS BYTE LS BYTE

92

REMark = June « 1984



Bit manipulations

Elemant &
Decimal Binary
-222 11111111 00100010
AND 224 00000000 11100000

Elsment 4
Decimal Binary
89539 00100010 11111111
AND EOOO0 HEX 11100000 OoODOODOO

result=32 result = 8192 (0100000 0O000COOQ
divide 32 by 32, 00100000

same as right shift 5 places

divide 8192 by 8192, D0100000 0ODOOODO
same as shifting right 13 places

] —
result = 1 00000000 0O0ODOOY 1 and result = 1 0000000 0O00ODODL

1
|
I
00000000 CO100000 I
I
1
1

In elements 3, 6, 9, etc., | am interested in the three most significant
bits of the least significant byte. In elements 4, 7, 10, etc., | am
interested in the three most significant bits of the most significant
byte. In sending these bit patterns to the printer it is not necessary to
worry about the value /9" being present because this value cannot
be attained with this routine, therefore it is not necessary to add 228
to every number. It is possible for the results of these manipulations
to be negative. If this happens | simply add 8 to that number and
continue. The pattern is correct. | leave it to the reader to figure out
why it works. This algorithm works for the last column, 3 dots wide,
only.

The Program

Line 50 commands that all numerical variables will be of type
integer.

Line 70 requests that the DRIVE:FILNAME.EXT of the graphics screen
to be printed be entered.

Lines 120-170 set up the screen variables. COLARRAY holds the
data taken from the screen with the GET command on lines 410 and
630. LEFTSIDE is set to 0, the value of the leftmost addressable point
on the screen. RITESIDE = 639, the rightmost addressable point on
the screen. TOPEDGE = 0, the uppermost addressable point on the
screen. BOTMEDCGE = 224, the lowest addressable point on the
screen. COLSTEP = -7, the dimension in dots and the direction that
the program will step across the screen. COLWIDTH = 7, the
number of dots the line printer will print while in the GRAPHICS
mode. LEFTCOLM = (RITESIDE MOD 7). This line determines the
addressable dot column at the left side of the screen after taking all
those seven dot steps. LEFTCOLM actually equals 2. The command
works like this: LEFTCOLM = RITESIDE - INT(RITESIDE / 7) :
LEFTCOLM = 639- INT(639 / 7).

Lines 210-250 set up the printer commands and special graphics
strings. GRAFCHAR is the integer array which holds the manipulated
results of the GET command for output to the printer, GRAFMODES$
is the control code, CHR$(3), sent to the printer in line 310 which
puts the Okidata in the GRAPHICS mode. NORMODES$ is the con-
trol code, CHR$(3);CHR$(2), used to put the printer back in the draft
print mode. A new page command, CHR$(12), is included with this
sequence. GRAFCRLFS$ is the control code sequence which returns
the printhead to the left side and feeds one graphics line feed (a
graphics line feed sa there will be no gaps from one graphics line to
the next]. LMARGINS is a string of 15 dot spaces. The printer will
print 480 dots per 8 1/2 inch line at 10 chr./inch. For a presentable
printed output, every dot pattern is printed twice (remember the
aspect ratio). There are 225 bit patterns per line, 2 printings of each
pattern, with 30 dots left over on the line. 30/2 = 15; the number of
spaces in LMARGINS. Printing 15 dot spaces at the beginning of
each line will center the image.

Lines 290-320 initialize the printer. Line 290 OPENs the printer as
FILE #1 for output from the program. The command on line 300
allows the printer to print an infinite number of characters on a line.
Normally Z-BASIC would insert a carriage return/line feed after 80

characters. This program prints 465 graphics characters per line, or,
as far as Z-BASIC is concerned, some 43000 characters are printed
on one line. Think about the codes being sent out versus the ASCII
character set and note that the majority of the ““characters” being
printed are greater than 128 in numerical value. Line 310 places the
printer in GRAPHICS mode. Line 320 sends a graphics line feed to
the printer, mainly to let the programmer know that the program is
running properly.

Line 340 loads the screen of your choice into the GREEN plane of
video memory.

Lines 400-590 GET the information from the screen, 8 dots at a time,
perform bit masking and bit slicing, and output the formatted results
to the line printer. The loop counter COL is initialized to the value of
RITESIDE, 639, and each time through the loop it is STEPped COL-
STEP, or -7. It is used within the loop to define the rectangle or slice
being scanned, along with TOPEDGE, BOTMEDGE and (COL-
COLWIDTH). Lines 460-500 are interesting. The variable ELMNT,
which is used to step through the array GRAFCHAR(ELMNT), is
incremented by 2 while the array counter RAYCOUNT is in-
cremented by 3. These increments bypass those elements of COL-
ARRAY which are not wanted (elements 2,5,8,11, etc.) and at the
same time place desirable values in contiguous elements of GRAF-
CHAR. The bit manipulation occurs at lines 470 and 480. At line 350
tests are performed to insure that if a “3+128" is encountered it is
sent to the printer four times. Remember, a *3" is a printer control
code unless two characters are sent in succession. To print two 3's,
four 131's are sent out (131-128=3). The remaining elements of
GRAFCHAR are printed twice for symmetry. After element #224 of
the array is printed a graphics line feed is sent out and a new line is
started. Ninety- one graphics lines are printed in this manner.

Lines 630-750 print the last column in a manner similar to that
employed for the previous 91 columns, however the bit manipula-
tions are different.

Line 770 returns the printer to the normal print mode, a page feed is
sent and a beep is sounded to annoy the programmer.

Running the Program

Run your graphics routine and when the display is satistactory, SAVE
the screen on disk with the following Z-BASIC sequence placed in a
suitable location in your program: DEF SEG=&HEQ00: BSAVE
“DRIVE:FILENAME.EXT",0,&HDO000. This will save the green plane
in a disk file of some 50K bytes. Load this OKIDUMP program,
insuring that your OKIDATA 92 is turned on. RUN. The program will
ask you for the screen name to dump to the printer. Enter your file's
name and hit return. Now go make a peanut butter sandwich be-
cause the program takes about 9 minutes to dump the entire screen to
the printer, This is a substantial improvement over the 2-hour pro-
gram and not bad for an interpreted BASIC screen dump program.

Here is a simple program which should be a reasonable test of this
screen dump program. Run it with a scratch floppy in Drive B (the
video file requires about 53K bytes) and then run the OKIDUMP
program in Drive A. At the prompt enter B:CIRCLSCR <return> and
finish that peanut butter sandwich.

10 CLS

20 XX=320:YY=112

30 FOR X=10 TO 250 STEP 10

40 CIRCLE (XX, YY).X

50 NEXT X

60 LINE (0.0)-(639,224),.,B

70 DEF SEG=&HEOOD

80 BSAVE "B:CIRCLSCR",O,&HDOOO

REMark * June = 1984

93



It is possible to MERGE this program with your Z-BASIC graphics
program. Delete lines 70 and 340, place a RETURN at line 780 in
place of the END, RENUM this routine to fit your program, SAVE itin
ASCII format, and place it at the end of your program with the
MERGE command. Then use a GOSUB at the appropriate point in
your program to call this routine.

Possible Problems

Insure that the printer is turned on, the SEL lamp is lit and the print
head is at the left side of the carriage before running this program. If

you should interrupt printing for any reason prior to the end of the
program, make certain that you turn the printer off and then on again
to clear the Okidata’s internal print buffer of any characters not yet
printed. If you should encounter an ILLEGAL FUNCTION CALL AT
LINE 410, then try increasing the dimension of COLARRAY like this:
120 DIM COLARRAY (500), or a similar larger figure.

| have made no provision for vertical centering on the page. A few
normal line feeds prior to entering the graphics mode should suffice.
| will leave this to the individual programmer. The necessary codes
are in Okidata’s manual, along with page length, dot densities, etc.

Lisﬁng] L R T T T T T
20 ' w=*»  SCREEN DUMP FOR OKIDATA 92 PRINTERS fois ot
SO N W AND THE HEATH/ZENITH H/Z-100 TEEE
40 ' Rews BY TIM ROSS et
50 L} A AR R R R R R R R R R A R R R R R R R R R R R R RS R R R R

60 DEFINT A-Z 'SET ARRAYS AND VARIABLES TO TYPE INTEGER

70 INPUT "ENTER SCREEN NAME TO DUMP TO THE PRINTER : ";SCRNAME§

80 'PLACE THE FILENAME OF THE DESIRED GRAPHICS SCREEN INTO SCRNAME$
90

100 'SCREEN VARIABLES

110

120 DIM COLARRAY(340) 'HOLDING ARRAY FOR DATA TAKEN FROM SCREEN

130 LEFTSIDE=0:RITESIDE=639 'SCREEN EDGES, LEFT AND RIGHT SIDES

140 TOPEDGE=0:BOTMEDGE= 224 'SCREEN ROW NUMBERS

150 COLSTEP=-7 'STEP THROUGH THE SCREEN 7 DOTS A SLICE FROM RIGHT TO LEFT
160 COLWIDTH=7 'COLWIDTH+1 DOTS ARE TAKEN OFF THE SCREEN IN ONE PASS

170 LEFTCOLM=RITESIDE MOD 7 'SCREEN COLUMN NO. OF LAST PRINTER LINE

180 '——
190 'PRINTER VARIABLES

200

210 DIM GRAFCHAR(225)' THE ARRAY HOLDING ONE LINE OF GRAPHICS CHARACTERS
220 GRAFMODE§=CHR$(3) 'CODE USED TO SWITCH OKIDATA TO GRAPHICS MODE

230 NORMODE§=CHR$ (3)+CHR§(2)+CHR§(12) 'SWITCH BACK AND ADVANCE TO NEXT PAGE
240 GRAFCRLF$=CHR$(3)+CHR$(14) 'GRAPHICS CARRIAGE RETURN/LINEFEED

250 LMARGIN§=STRING$(15,0) 'LEFT PAPER MARGIN TO CENTER IMAGE

260

270 'INITTALIZING THE PRINTER

280
290 OPEN "LPT1:" FOR QUTPUT AS #1 'LINE PRINTER = #1

300 WIDTH #1,265 'KEEP BASIC FROM ADDING CARRIAGE RETURNS EVERY B0 CHARACTERS
310 PRINT #1, GRAFMODE$; 'SWITCH GRAPHICS MODE ON

320 PRINT #1, GRAFCRLF§; 'SEND A GRAPHICS CARRIAGE RETURN, LINE FEED

330 ¢
340 DEF SEG=&HEDOD:BLOAD SCRNAME$ 'LOAD THE SPECIFIED IMAGE INTO GREEN PLANE
350 '——
360 'STEP ACROSS THE SCREEN, RIGHT TO LEFT, 7 DOTS AT A TIME.
370 'GET A COLUMN, PERFORM BIT SLICING AND MASKING, AND

380 'SEND THE RESULT TO THE OKIDATA 92

390 '——
400 FOR COL=RITESIDE TQ LEFTCOLM+1 STEP COLSTEP

410 GET (COL, TOPEDGE)-((COL-COLWIDTH), BOTMEDGE),COLARRAY
420 ELMNT=0:PRINT #1,LMARGINSG;

430 p—

440 ' BIT SLICING AND MASKING, FORMATTING FOR OKIDATA

450

460 FOR RAYCOUNT=3 TO 338 STEP 3

470 GRAFCHAR( ELMNT )=( COLARRAY (RAYCOUNT) AND (127))+128

480 GRAFCHAR(ELMNT+1)=( ({ COLARRAY(RAYCOUNT+1) AND 32512 )/256)+128
490 ELMNT=ELMNT+2

500 NEXT RAYCOUNT

510 FOR ELMNT=0 TO 224 'PRINTING ROUTINE

520 IF GRAFCHAR(ELMNT)=131 THEN PRINT #4,STRINGS(4,3);:G0TO 570

530 ' TEST FOR CHARACTER 3, AN OKIDATA COMMAND CHARACTER

540 ' IF A 3 IS PRESENT SEND 2*2 OF THEM TO THE PRINTER, REQUIRED BY OKI
550 PRINT #1,STRINGS(2,GRAFCHAR(ELMNT) );

560 ' SEND TWO OF EACH CHARACTER TO OKI FOR SYMMETRY

570 NEXT ELMNT

580 PRINT #1,GRAFCRLFS;
590 NEXT COL

800 !
610 'LAST COLUMN, THIS ROUTINE IS DIFFERENT FROM PREVIOUS COLUMNS
620 '
630 GET (7,TOPEDGE)-(LEFTSIDE, BOTMEDGE) ,COLARRAY 'LAST LINE, WHICH IS NARROWER
640 ELMNT=0:PRINT #1, LMARGINS; 'CENTER THE IMAGE

'SEND A GRAPHICS LINE FEED TO THE PRINTER

94 REMark « June « 1984



650 FOR RAYCOUNT=3 TO 339 STEP 3

660  GRAFCHAR(ELMNT)=(COLARRAY(RAYCOUNT) AND (224})/32
670  GRAFCHAR(ELMNT+1)=(COLARRAY(RAYCOUNT+1) AND &HEOOD)/8192

680 ELMNT=ELMNT+2
690 NEXT RAYCOUNT
700 FOR ELMNT=0 TO 224

710 IF GRAFCHAR(ELMNT)<0O THEN GRAFCHAR(ELMNT)=GRAFCHAR(ELMNT)+B:G0TO 730

720 IF GRAFCHAR(ELMNT)=3 THEN PRINT #1,STRINGE(4,3);

1 GOTO 740

T30 PRINT #1,STRINGS (2, GRAFCHAR(ELMNT));

T40 NEXT ELMNT
750 PRINT #1,GRAFCRLFS;
760 '

' GRAPHICS CARRIAGE RETURN

770 PRINT #1, NORMODES

T80 BEEP:END

Listing 2

10
20
30

' CHRIMAGR, FROM Z-BASIC MANUAL, PAGE 8.27, 8.28
CLEAR 100

INPUT "CHARACTER :",C$:PRINT C$

35 GOSUB 480

40 'INPUT"COLOR NUMBER <7>:",R

50 IF R<i OR R>6 THEN R=T7

60 'INPUT "POSITIVE OR NEGATIVE <P>:", 1§

61 IF I§="" OR I$="P" OR I$="p" THEN I=1 ELSE I=D

65

'INPUT "MASK 0,1,NONE <NONE=>" M§

510
520
530
540
550
560
570
580
590

'RETURN THE FRINTER TO NORMAL MODE, PAGE FEED

B§ (3)="011"

B$ (4)="100"

B$ (5)="101"

B§(6)="110"

B$(7)="111"

RETURN

DPC§=0CT$ ( XDEC) : BIN§="":FOR YCOUNT = 1 TO LEN(DPC$)
Q99=VAL(MID§ (DPC§, YCOUNT, 1) ) : BING=BIN§+BS§ (Q99)
RETURN

66 IF M§<"D" AND M§<>"1" THEN Mg§=""
80 CLS

90 COLOR R

100 DIM PODE(19),P01%(19)
110 PRINT C§

115 COLOR 7

120 GET(7.8)-(0,0),PDO%
121 FOR S=0 TO 19:LPRINT S;POD%(S);:NEXT S:LPRINT

130 IF I=0 THEN PUT(0,D),PO0%,PRESET:GET(0,0)-(7.8),P00%
140 PRINT

150 PRINT "PIXELS","SCAN"

160 PRINT "ACROSS","LINES"

170 PRINT POOZ(0)/3,PO0%(1)

.PD2§(5)

180 PRINT

190 PRINT “BLUE","RED","GREEN"
200 PRINT

210 FOR Y=2 TO 16 STEP 3

220 X=Y

230 GOSUB 300
240 GOSUB 380
250 GOSUB 440
260 NEXT Y
270 END
280 ' SUBROUTINES
290
300 XDEC=POO%(X):GOSUB 570:
PO2§(0)=RIGHTS ( STRINGS  16,48)+BIN§,8)
310 PO2§(1)=LEFTS(RIGHTS (STRINGS (16,48)+BINg,16),8)
320 XDEC=POO%(X+1):GOSUB 570:
PO28 (2)=RIGHTS ( STRINGS (16,48)+BIN§,8)
330 PO2§(3)=LEFTS (RIGHTS (STRINGS(16,48)+BINg, 16),8)
340 XDEC=POO%(X+2):GOSUB 570:
P02§ (4)=RIGHTS ( STRINGS (16, 48)+BINg,8)
350 P02§(5)=LEFTS(RIGHTS ( STRINGS (16,48)+BINg,16),8)
360 RETURN
370
380 IF M$="" THEN 420
390 K=INSTR(PD2§(J) . M§)
400 IF K<>0 THEN MIDS(P02§(J).K,1)="":GOTO 390
410 NEXT J
420 RETURN
430
440 PRINT P028(0),PD28(1),P02§(2)
445 LPRINT PD2§(0),PO28(1),PD2§(2)
450 IF X+2=16 THEN 470
460 PRINT P02§(3),P02§(4),P028(5)
4865 LPRINT PO2§(3),P0O28(4),P02§(5)
470 RETURN
480 B§(0)="000"
490 B§(1)="001"
500 B§(2)="010"

Listing 3 05 'CIRCLBOX BAS
10 CLS
20 XX=320:Y¥Y=112
30 FOR X=10 TO 250 STEP 10
40 CIRCLE(XX,YY).X
50 NEXT X
60 LINE (0,0)-(639,224),.B
70 DEF SEG=&HEOOO

:NEXT YCOUNT

80 BSAVE "B:CIRCLSCR",O,&HDOOOD %

LEARN TO PROGRAM H89/H19 GRAPHICS IN MBASIC

BASIC GRAPHICS PRIMER is a2 computer based course that will teach you fundamental
MBASIC programming technigues to control the H19 terminal or HBS computer graphics. Seven
lessons will teach you many forms of graphic plots, data plotting, multiple sequential and random
access liles used for graphics, basic figure animation technigues, and simple computer graphics
game design. Each Iessun :unsms of srrnple |iluslranm program segments with complete explana:
tions of the prog to reinforce the lesson material, and one
or more example ptograms Most H19/H8Q terminal commands are covered in the lessans, in-
cluding use of the special function keys. BASIC GRAPHICS PRIMER is a "HOW T0" course
with plenty of examples. If you want to learn how to take full advantage of the H19/HBS
graphics features in your programs, BASIC GRAPHICS PRIMER is a must. For CPIM only, Re:
guires a printer.

ONLY $49.95!
CPIM version for HBS, HE, H19 requires CPIM and MBASIC

Newline Sofrware

P.0. Box 402, Littleton, MA 01460 (617) 486-8535

T NAME
3 STREET
H
:srnrs P

[ send COD fadd $3.00)

Send me ____ BASIC
GRAPHICS PRIMER
programis| forCPIM
at $49.95 each.

Ehe:k one: [J
H Send order to;

payment enclosed

NEWLINE SOFTWARE, P.0. BOX 402, LITTLETON, MA 01460
Foreign orders: add $3.00 Airmail, $10.00 for non-U.S. checks

FLLLLD

CPiM is a trademark of Digital Research, Inc.
MBASIC is a trademark of Microsoft, Inc.

REMark * June ¢ 1984

95



<3 Vectored from 12

DEFMS.ASM -- Contains the operating system definitions
DEFASCIILASM -- Contains the ASCII definitions
DEFMTR.ASM -- Contains the monitor ROM routine definitions

Naturally, there are other files you may need for more advanced
programming, but these will suffice to begin with. How do you tell
what other files you may need? Only by inspection. | printed out all
the files on the distribution disk, just to have a reference to what is
contained. Usually, when a program is written, it will tell you which
files you need to INCLUDE, and you can transfer those to our
working disk. It's generally better to have all the INCLUDE files on
the same disk as MASM, which means for those of you blessed with
two drives, you may wantto have the editor and the source fileon the
second disk. You can also put EXE2BIN on that disk. If you put the
library files on the second disk, it's possible to put LINK on that disk,
too. Then when you assemble afile, send the output (the .OB] file) to
the second disk for subsequent LINKing and conversion to a .COM
file.

Fortunately, with ZDOS and 320K on a disk, you can usually do
useful assembly language work with everything on one disk. Only
when you get into bigger projects (like reassembling an altered BIOS)
do you need to study the MASM and LINK sections of the ZDOS
manual to learn the more advanced tricks.

With two drives available, | prefer to have a SYSGENed disk with my
editor on drive A: and an unSYSGENed disk with all the assembler-
related files on drive B: where | can get at them easily by making B:
the default drive. This is done, of course, by typing B: in response to
the A: prompt.

The moral of this part of the story is that you should feel free to
experiment, and work out your own best distribution of the files you
need to work with. You might also pass along what you find to others,
since no matter how much assembly language experience one has,
there is always something new to learn.

D. C. Shoemaker

HQ US European Command
Box 897

APO NY 09128

From the Author of BASMAPER
Dear Walt,

Concerning the 128K RAM problem with my BASMAPER program in
the article which appeared in your February 1984 issue. | have since
discovered it may be that the problem is really in the version of
ZBASIC being used. If Version 1.0 created on 15-Jul-82 is used, the

base load offset is in byte 325,326 instead of 343,344. The changes
are in statement numbers 65501 and 65523.

Change
I=FNXX(343)
to
I=FNXX(325)

Again, | am sorry for the inconvenience | might have caused, I'll use a
different technique next time.

Ted W. Miller, Jr.
7749 Granada Dr.
Buena Park, CA 90621

Double the Speed of your H/Z89-90
Cut computing time by as much as 50%

Fast Operation
With the Dual Speed Module, software that used to be slow
and inefficient now zips right along Run programs like
SuperCaic (in “auto mode ) and Spellstar without long wais

Easy
Simply replace your existing microprocessor IC with the Dual
Speed Module and stop wasting time. Installation requires
no frace cutting or soldering

Fully Supported

CP/M is a registered rademark of Digital [kesearch

IBa ssssasasssncnanannd

|

H89/Z90’s CAN
NOW DEAL WITH
A FULL DECK!

THE ORIGINAL ALL-IN-ONE.
ACCESSORY BUS EXPANDER.

MHB9+3 doubles expansion capacity. Allow
for 6 right-hand type cards instead of the usual 3.

Room at last to run those neat accessory boards L

you've seen advertised!

Piggyback matherbaard installs internally with a
screwdriver in just minutes - with no modifica-
tions! 3 skots exactly duplficate the onginals. The
3 added skots occupy unused addresses and
eliminate previous conflicts 100% compatitie
with all accessary boards!

No overheating problems! Simple design draws

The best news about this “No-hassle” design is
the price — IIIILYSI 5“ About 1/3 the
price of other solutions!

Price inciudes assembled and lested MHE9+3
expamm,mmmﬁmmm' tions and one (1) year

litthe power. Leaves plenty of overhead for the
minimal load of most accessonies Full technical
information provided

¥ dents add 6% tax. USA include
$5 shipping. Foreign add $10. Telephone and
COD orders accepled

mako data products
1441-BN. RED GUM, ANAHEIM, CA92806
PHONE (714) 632-8583

96

REMark = june » 1984



ZVM-134 and 135
VIDEO MONITORS

DUST COVERS

r WUow Available KCK
fuw: ENTERPRISE

3328 Northwest C Street
Richmond, Indiana 47374

The covers are made of water repellent fabric in
basic colors of: blue — brown — green — trimmed
in a contrasting color, and are double stitched for
DURABILITY and machine washable.

$15.50

Other sizes and styles available upon request.
Fill out Order Form or call 317/966-4052

Name:

Street:

City: State: Zip: _

CJ2vm13a  []2vm-135
[] Blue [0 Brown [ Green

Send me at $15.50 each
Add $2.00 tor postage and insurance.

CHECK
ONE:

Indiana residents
add 5% sales tax.

H/Z-100 AND 150 PC
GRAPHICS SOFTWARE

MICROSERVICES continues to expand its support of
Heath/Zenith computers.

For H/Z-100s:

ZANIMATE. Make color animation sequences using
ZBASME . i mviiansavame s A R S e $64.95

ZPALETTE. Draw images in 92 colors using ZBASIC. Im-
proved with three (3) painting modes and graphics

GONETANE o carernswarmnese s i w5 $59.75
ZPATTERN. Test your color monitor ........... $24.95
Z3D from COLORWORKS. Make three-dimensional ob-
JBCtS INCOIOT L.t it it $75.00

For H/Z-100s and 150 PCs:

SOFTKITS from KERN INTERNATIONAL. We are now
carrying a full line of this excellent series of books and
disks for graphics and business/scientific applications.

We are continuing to introduce new products.
Write for our catalog.

mmmmm MICROSERVICES W
VISA P.O. Box 7093
EEEEEE Menlo Park, CA 04026 | G0

Phone: (415) 851-3414

Include 3% p/h ($3.00 min.). California add 6'%% tax.

Here’s More On The Z-100 Key Click
Dear HUG,

| found Mr. Richard Hole's letter in the March 84 REMark, “How To
Turn Off the Z-100 Key Click”, to be very informative. However, |
did probe a bit further and expanded on Mr. Hole's idea. | found that
you do not need to type in REM in the AUTOEXEC file. Using EDLIN,
| created an AUTOEXEC file as follows (note that typing the F8
function key generates a 4 which is the symbol for ESCape):

A:EDLIN AUTOEXEC.BAT <return>
EDLIN Version 1.02
New File
*| <return>
1*<F8>x2<return>
2*<CTRL C>
*E <return>

This will turn off the key click like Mr. Hole’s method, but without
using any REM statements.

| expanded Mr. Hole's idea even further. | wanted to control several
Z-100 keyboard and video display features any time | was in ZDOS,
not only on a cold boot. | created a “‘key click off file' as follows:

A:EDLIN NOBEEP. <return>

EDLIN Version 1.02

New File

*| <return>
1*<F8>x2<return>
2*<CTRL C>

*E <return>

(Note the period after NOBEEP)

Now if | want to turn off my key click any time in ZDOS, | justtype in
TYPE NOBEEP <return> (you do not need a period after NOBEEP
here) and no more key click!

Using EDLIN, | have created several “one-liner” programs which
use different ESCape codes to turn on and off different keyboard and
video display features. The following is a listing of program titles,
descriptions of the features, and the necessary codes to implement
them:

Title Description Codes
BEEP Enables key click <F8>y2
BLOCK Block cursor <F8>x4
NOBLOCK Underscores cursor <F8>vy4
BLINK Blinking cursor <F8>vy;
NOBLINK Non-blinking cursor <F8>x;
GRAPH Enter graphics mode <F8>F
NOGRAPH Exit graphics mode <F8>G
CURSOR Turn on cursor <F8>y5
NOCURSOR  Turn off cursor <F8>x5
REVERSE Enter reverse video <F8>p
NOREVERS Exit reverse video <F8>q
REPEAT Enable autorepeat <FB8>y<
NOREPEAT Disable autorepeat <F8>x<
NORMAL Returns everything to <F8>y2<F8>y;
normal without resetting <F8>G<F8>y4
the Z-100 <F8>y5<F8>q
<F8>y<

My method allows me to selectively turn on and off certain features
and to enable features from a cold boot or anytime while | am in
ZDOS. The words are easy to remember, and all those “‘one-liners”

REMark + June « 1984

97



take up only a few bytes (not Kbytes!) on my ZDOS utilities disk.
Thank you again, Mr. Hole, for your enlightening letter.

Richard J. Komar
1408H Paegelow
Scott AFB, IL 62225

Correction to “Standards For Terminal Control”’ (Issue 46)
Dear HUG,

| enjoyed David Warnick's article on Standards For Terminal Control
{Issue 46) and especially his sample program on Biorhythms. | think |
have found a couple of minor errors though.

Line 3130 should read:
3130 D4=D4+0

The other error only occurs when the reporting month happens to be

February in a leap year (asin 1984). One way to correct the problem
is as follows:

5130 IF (INT{Y1/4))*4=Y1 THEN GOTO 5135 ELSE 5140
5135 IF D1=30 THEN Di1=1:Mi=M1+1:
5136 GOTO 5170

Doug Bailey
474 Oak Avenue
Aurora, IL 60506

An Amusing Short Program
Dear HUG,

Here's a short program for your amusement. It runs on an H/Z-89 (or
H/Z-19) with MBASIC (CP/M or HDOS). Be sure to accurately type
the string assignment in line 20, including lower case letters and
spaces.

10 PRINT CHR§(27)+"F"

20 X$="wi ‘bt

30 Y$=SPACES(79)

40 Y$=MIDS(Y$,2,39)+MID§(X$ B*RND(1)+1,1)+MID$(Y$, 40,39)
50 PRINT Y§

60 GOTO 40

Now, do the patterns appear to move upward, or do they start at the
center and move outward?

Bruce C. Trump
7925 N. Soledad Ave.
Tucson, AZ 85741

Beware of Chain Letters
Dear Walt,

Frank and | received an interesting letter from a group in New
Mexico this week. In three pages, it detailed a computer- program-
listing-by-mail scheme that is a variation of the old chain letter
formula. As we are sure that other REMark readers will be receiving
similar letters, we wanted to pass on the ruling we received from our
local Postal Inspector General:

ANY chain letter scheme in which the primary object is an appeal for
money is illegal. It doesn’t matter whether the letter asks for recipes,
household hints, grocery coupons, or computer programs; if the
scheme boils down to “Send $5.00 to the names on list for a XXXXX,
remove the top name, add your own, and pass it on”, itis illegal.

Even without the legal question, the first guy on the list has used his
word processor and mailing list program to hit the immediate world.
We think the guy in New Mexico got our name and address from a
magazine article we published last year. At that rate, the prospects
for receiving a return on your investment make Carlo Ponzi look like
a blue-chip stock.

We hope this will save your readers from falling victim to this
scheme.

Mary Lynn Hutchison
5327 Edgewater Drive
Ewa Beach, HI 96706

The Demise of the COLD HUG
Dear HUG,

Please place a notice in your magazine noting the demise of the
COLD HUG. This is due to my reassignment to Fort Meade, Mary-
land and the reassignment within the next two months of the remain-
ing members. As of this date, there are no other Heath Computer
Users' in the immediate area to carry on the group.

The COLD HUG Bulletin Board will cease operation on May 10,
1984 for the same reason.

Please express my thanks to the suppliers and people that used the
board for their support and help.

Stan Lockhart

P. O. Box 229

Fort Greely, AK

APO Seattle, WA 98733 ¥‘

Expand your H/Z89-90 from KRES
Make your computer a more useful friend

* Now you can add all of those extra boards you've always
wanted (color graphics, speech, robotic control, paral-
lel—to name a few)

« The Kres Expansion endables you to put seven full sized
boards inside your H89 cabinet; no external cables or
boxes.

* Plug in any boards without any software modification

* Simple to install and use

EXP-700

$395.00
+ $6.00 shipping
and handling

PO.Box17328, Ivine, CA92713
(818) 957-6322 o
(714) 569-1047

98

REMark = June = 1984



™

| ||

MENU DRIVEN CONDOR / ON-LINE HELP SCREENS AND CONDOR TUTORIAL

HELP! Condor was designed with
the first time computer user in
mind. SoftHelp has enhanced the
Condor database to make it more
“user friendly.”

HELP! Condor is the easy way to
enjoy the power of the Condor
relational database without
leaming commands or syntax.

HELPI Condor is both a front-end
generic MENU, as well as on-line
help for every Condor command,

The manual for HELP! Condor
includes:
- Merging Condor files and
Word Processors
- Merging Condor and Lotus 123
- BASIC programs

~ Command Files Explained

HELP! Gondor™
$149.00

HELP! Condor by SoftHelp, Inc.

"It is one of the most useful programs of
its type we have ever seen and believe
me, we see a lot of software”

Don Kenny

Product Evaluation Manager
Micro D

Fountain Valley, CA

“I think this product can make Condor
easier to sell, because it makes the users
life easier.”

Robert Eigler
President
Micro-Age
Houston, TX

"First time Condor users can now be up
and going in minutes instead of hours.”

Advanced Software Technology ................. 42
Apogee Software .........cccccooeeiiiiiiicnii. 89
Controlled Data Recording

SYSIeMS, INC. (i i e 30,81
D-G Electronic Developments Co. .......... 100
Ceneric Software ........ccoccececiiiiccniircccis.. 30
HeadWare -........:uicusssuasssivivicssmain 25
Paul F. Herman .........ccoooeieiiiiii 81
Husker Systems of Nebraska, Inc. ... 16
Jay Gold Software ..........ccccccovvevcnecvnnn 36

KCK Enterprise 97

Kres

Mako Data Products ....coooeeiveieaieeaenaenn, 96
Micro Innovations .............c..cccciveiinei e, 36
MicroServices ... ... .. ..o 96
Newline Software ... ... 19,95
North Coast intelligence, Inc. ... 29
Redwood Development ... 42
5 & K Technology .......cococovvvvievnicievnin, 46

The expert Condor user may alter 3527 Ock Lawn Ave. Suite 179 b DiAon
the source code of HELP! Condor (%c:':;-;es’g’gggs Vice Presider, Matketig
; ; - ua Computers
saving days of programming. VISA / MASTERCARD
Index of Advertisers

Secured Computer Systems
Skill Data
SoftHelp, Inc
Software Support, Inc. .........
Software Toolworks, Inc. ...
Software Wizardry

Studio Computers, inc.

Sunflower Software, INC. ..cioccviiiiniinninn
U.S. RobOtics INC. .ocoevvieeiieiiiicii
ZPAY Payroll Systems ...............ccceeiiiiiiinn,

Changing your address? Be sure and let us know since the software catalog and
REMark are mailed bulk rate and it is not torwarded or returned,

&:: CUTALONGTHISLINE == === == - S S oS-SS oSS oSS oSS oSS S SSSS=—=—so==============

HUG MEMBERSHIP RENEWAL FORM

When was the last time you renewed?

Check your 1D card for your expiration date.

REMEMBER - ENCLOSE CHECK OR MONEY ORDER

CHECKTHEAPPROPRIATEBOX AND RETURN TO HUG

IS THE INFORMATION ON THE REVERSE SIDE CORRECT?

IFNOT, FILL IN BELOW.

Name US DOMESTIC

CANADA
Address INTERNATL*
City-State

NEW

MEMBERSHIP RENEWAL
RATES RATES
$20 1 $17 [
$22 [ $19 [J USFUNDS
$30 ] $24 [] USFUNDS

* Membership in France and Belgium is acquired through

Zip

the local distributor at the prevailing rate.



7,

Superior

BULK RATE

_ - Heath //;_E_H_LYQ U.S.PI:c;:tage

USQI’S’ Heath Users’ Group

Group

Hilltop Road
Saint Joseph, Michigan 49085

Volume 5, Issue 6

POSTMASTER: If undeliverable,
please do not return. 885-2053





