Volume 5, Issue 10 * October 1984
P/N 885-2057

W : HEATH :
Official magazine for users of | Zewr| computer equipment.

-

The basic goal of business is to get and keep satisfied
customers. Seems obvious, but a surprising number
of comw&m‘%
ing. At First Capitol Computer, our first principle is
“satisfy the customer”. How do you do this? By hav-
ing great prices and total knowledge of what you're

We're the retail sales division of Software Wizardry,

computer systems is legendary and award winning.
The same expert Software Wizardry staff that devel-
ops top-notch hardware accessories and software for
L1y]
peripherals, software and supplies for First Capitol.

N

port and expertise (or claim to), also charge you total
list price. Not at First Capitol! We offer prices you'd
have to look under a rock to beat, and who wants to

Uy from a source like that?™)
e | Cala "

Systems Our systems expertise extends beyond the norm, too.
up with one of the best-value CAD systems you can
AUTHORIZED SALES AND SERVICE find, complete with plotter. Are you thinking about a

Local Area Network (LAN)? Not only do we do net-
works, we' Tl discuss with you WHICH %HE of the sev-
eral we support would be best for your application.

Ak I 1
LAAELELE] I o

price listin the back of every magazine. What we do
offer is the kind of support you expect from a comput-
er systems specialist, AND prices that rival the take-
your-money-and-run discount house. Now that's a
combination you can have faith in!

At First Capitol. our first principle. is you! —

NEW TOLL-FREE NUMBER!

1-800-TO-BUY-IT ez forec-

for orders and quotes

First
Capitol
Computer

1-314-946-1968
for questions and technical support

Available direct from First Capitol Computer. Please add $2 1106 First Capitol Drive St. Charles, MO 63301 {314) 946-1968

minimum (or 2%, whichever is greater) for shipping and han-

dling. If shipped to a Missouri address, please add appropriate

sales tax. First Capitol has over 500 items of interest to Heath/Zenith
users, including all Software Wizardry products. Please request

First Capitol Computer is a division of Software Wizardry, Inc. our free full line catalog.

REMark * October * 1984

REMark:

Volume 5, Issue 10 * October 1984

on the stack

Western Regional HUG Conference ... 9

Practical File Management David E. Warnickccccecccuccvvvvcvcnnicics. 11

Spreadsheet Corner - Part 4 H.W. Baumancccocccoovmnivcivevcneccccuiininenns 15
The FORTRAN Formula-1 Dick Stanleyccooemmimuieceenscrirecininns 21
Introduction to Data Structures - Part 3 Emily A. Yountc..cc....... 25
“My Favorite Subroutines’” . e S ;- |
New HUG Productsoooimieieeeeessemesonsesssssessssnsssiscnees 34
Local HUG Club Newsoooniiicivcriinnenes s 38

How To Make Color Lecture Slides
By Photographing The CRT Display Robert). Telepak, M.D. 39

The Computers Are Coming . . . Are Here Louise B. Guest 41
Z-BASIC PatCh Pat SWayneccooooceeeeeereeeeeeeceeeesesieie s nien s esssnnes oo 43
Z80 Speedfix For H8 /H89 Frederick F. Freeland, Jr.ccoocvevvcvercerecunea. 45
CHECKSUM: A Program Proofreading Aid 5.A. jacob 53
Advanced Assembly Language Programming rat Swayne 57

ON THE COVER: A ZBASIC Halloween picture provided by Ed Byrnes of Intuitive Logic,
Rochester, Michigan. Ed, thru Intuitive Logic, produces CAl programs for youngsters for use
on the H/Z-100 computers.

Finally, text processing
that fits your computer
to the letter.

Newline. Matched to the Zenith 100,
150 and the IBM-PC. If you have one of

these systems, Newline has the right line of text
processing software for you. Because Newline’s
Professional Text Processor (PTP) is matched to
the keyboard and display characteristics of each of
these computers.

There are no complicated key sequences to learn.
And you'll be able to use labeled editing keys.
Which means it's exceptionally easy to use.

New features for Newline's PTP. Even
better, now PTP has more powerful text processing
than ever before. There's everything from full
screen text editing and on-screen bold, underline,
paragraph fill and justification to cut and paste to
configurable macro keys and much more. Plus,
you'll be able to use our software with any printer.

l Just give us the word. Newline’s
Professional Text Processor (PTP) is available
right now. So place your order today. And
get the text processing software that fits vour
system to the letter.

ADDRESS

CITY STATE ZIP

i
i
| o
i
\

Update from our old line. if you're
presently using the Newline TxtPro software on
your Zenith 100, now you can update to our more
powerful version. It's called the PTP-100. If you
currently have the ZDOS TxtPro, you can upgrade
to ZDOS PTP-100. If you have the CP/M-85 TxtPro,
you can upgrade to CP/M-86 PTP-100, but you'll
also need to upgrade your system to CP/M-86. Just
specify which one you have when you order. And if
you return your old TxtPro disk to us with your
order, you qualify for a special reduced price.

For Zenith 150 and IBM-PC users, there’s the new
PTP-PC. And it has all the same features as the
PTP-100,

software development editing.

For programmers, Newline's PTP also offers auto
indent and produces ASCII files for use with
assemblers, interpreters and compilers. And that’s
not just different, it's unique.

PTP-100 (for Z100) @ $99. or
PTP-100 (2100 Upgrade) @ $50.* Qty Amount
[lcpm-s6 (replaces CP/M-85)
[]zpos

*To qualify for Z100 upgrade price of $50. you must return your TxtPro disk.
PTP-PC (for Z150 or IBM-PC) @ Special

i
i
Introductory Price of $149. I
¥

] cpiM-86
[] MS-DOS or PC-DOS

RI Residents Add 6% Sales Tax
Shipping ($3. per program)
TOTAL ENCLOSED

Payment in U.S. Funds Only = Allow 2 wks. for Personal Checks = CALL (401) 624-3322 FOR C.0.D. DELIVERIES

VG S SN NGNS B BEE BEE BN NN BEN SRS SN SEN BN .

o NeW Line SofTWARE
P.O. Box 289 = Tiverton, RI 02878 = (401) 624-3322

Reseeding ZBASIC
Dear Hug,

This should satisfy Mr. Harvey's (Buggin HUG, June '84) request for a
simple method for reseeding the ZBASIC random number generator.
10 RANDOMIZE(TIME/3)

TIME returns a value from zero to 86400. TIME/3 ensures a seed
within the allowable limits, i.e. -32768 to +32767.

George Holt
403 2nd St. West
BAFB, LA 71110

Fixn’ Business Graphics
Dear HUG,

Responding to the request in the July issue from Sobantu Ndimande:
There are at least two problems with the Interactive Business
Graphics package on the H/Z-100 Demonstration Disk. First, the
package will not accept new data, and second, the graphics pro-
duced by some parts of the package are scaled incorrectly.

To fix the data input problem, change the followingin MENU.BAS:

1. Renumber line 50070 as line 50071.
2. In line 50080, change the two 50070s to 50071s.
3. Insert the new line 50070 KEYIN$=INKEY$.

To fix the problems in the bar chart display, make the following
changes in B.BAS:

1. Replace line 170 with 170 XEND=5TT.

2. In line 180, change 20 to 36.

3. In line 480, change the assignment statement for
EACHAREA to EACHAREA=((XPLACES/NRECORDS)\XSCAN)*XSCAN.

4. In line 78O, delete —EACHAREA-BLANKAREA.

5. In line 790, insert —-YSCAN\Z after YSTART.

6. Replace line 950 with
950 SPX=XSTART+(J-1)*((EACHAREA+BLANKAREA)\ XSCAN)*XSCAN.

To fix the problems in the line chart display, make the same changes
to L.BAS as listed above for B.BAS and, in addition, in lines 1012 and
1020, change EACHBAR to EACHAREA/2.

To fix the problems in the trend line chart display, make the same
changes to T.BAS as listed above for L.BAS. Also, in line 1060,
change the two occurrences of EACHBAR to EACHAREA/2 and, in
line 1040, replace the assignment statement for SPX with the one
given above for line 950.

The pie chart program plots an ellipse on the screen rather than a
circle. However, if you do a graphics dump of the screen to a printer
using the utility in the Z-UTIL package from Lindley Systems, the pie
will plot correctly as a circle.

| do not have color chips in my Z-100, so | am not able to test the 3

dimensional bar chart and multiple pie chart programs. | have not
been able to get the side bar chart program (S.BAS) to plot correctly.

Sincerely,

Craig W. Kirkwood
1960 East Vaughn Street
Tempe, AZ 85283

Press Release

The prize for guessing the number of SUNFLOWER seeds in the
bottle at the July HUG convention was $50.00 toward the purchase
of any merchandise listed in our current catalog.

There was a tie between Mr. Mike Wilson of O'Fallon, Illinois and
Ms. Lori Theodore of Hammond, Indiana. They both guessed 3500
and were the closest to the correct number of 3482. They will both
receive a $25.00 gift certificate toward any purchase from
SUNFLOWER.

Congratulations to Mr. Wilson and Ms. Theodore and our sincere
thanks to all who visited our booth and participated in the drawing.

Sunflower Software, Inc.

H/Z-100 Benchmark Primer
Dear HUG,

Well, you have a Z-100 with Basic and you wonder how you can
increase the speed at which your programs run. Towards this end
we've run a standard benchmark prime number program, the Sieve
of Eratosthenes, using several versions of some of the more popular
languages. In addition to testing the performance of the Z-100 using
these languages, we also installed a ““Z-100 Speed Module” that
supposedly increases execution speed by 50%.

All of the compiled languages tested run much faster than interpreted
Basic. Any one of these languages would offer a significant advan-
tage over Basic in execution time. Even the slowest of the compiled
programs, compiled using the IBM Pascal compiler, executed 26
times faster than interpreted Basic. The fastest compiled program,
produced using MASM, executed 425 times faster.

We note that it may not be fair to compare code produced by the IBM
compiler, since itis a 1981 product and more recent versions might
produce smaller and faster code. This just happened to be the version
available to us for testing.

Normally, assembly language programs produce compact code that
occupies much less disk space than equivalent programs written in
higher level languages. In this case, however, the assembly language
version is unusually large because of the way the program is written.

Next, we want to comment on the use of the “Z-100 Speed Module.”
It works! The execution speeds of all versions of the prime number
program increased by 50% . The cost of this module was $49.95 at
HUGCON 84 from C.D.R. Systems, Inc. (619-560-1272). Note that
the device may not work with all Z-100's.

Source code listings for the C, Pascal, and Basic programs were from
Gilbreath, J, and Gilbreath, G., ““Eratosthenes Revisited,”” BYTE,
January 1983, Page 283. The Basic program is given in Listing 1. The
assembly language program was from Lafore, R., Assembly Lan-
guage Primer for the IBM PC & XT, New American Library, 1984,

REMark * October + 1984

Page 472.

Richard and Janet Hirsch
470 Belleview
Webster Groves, MO 63119

Listing 1. Prime Number Program in Basic.

10 REM eratosthenes sieve prime number program in basic
20 DEFINT A-Z

30 DIM FLAGS(B191)

35 TIME§="0.00"

40 PRINT"10 iterations"

50 FOR M=1 TO 10

60 COUNT =0

70 FOR I=0 TO 8191

80 FLAGS(I) =1

90 NEXT I

100 FOR I=0 TO B1S90

110 IF FLAGS(I)=0 GOTO 200
120 PRIME =I+I+3

130 REM print prime

140 K=I+PRIME

150 WHILE K<=8190

160 FLAGS(K) =0

170 K=K+PRIME

180 WEND

190 COUNT = COUNT+1

200 NEXT I

210 MEXT M

220 PRINT COUNT.," primes"
225 PRINT TIME$:" to execute program"
230 END

Gripes on FORTRAN
Ladies and Gentlemen:

| have recently purchased a Zenith Z-100 computer. | enjoy prog-
ramming in both ZBASIC and FORTRAN. However, | have some
gripes about the FORTRAN software.

First of all, it does not have a text editor. This is only a slight
inconvenience, since | can input and edit the source program with
any word processing package. The main problem | have is that the
source file lines are not numbered. If an error occurs during compila-
tion, the compiler will give a line number. The compiler seems to
assign the first line of the program the number one and increases
each line number by one, except that it does not assign line numbers
to the continued lines. So when an error occurs, the compiler gives
the line number, but the hard- copy of the program listing is unnum-
bered. Hence, it is frustrating and time consuming to locate the line
in error. | do make many programming errors, hence, this line
referencing problem is a major source of frustration to me while
debugging. | don’t believe this problem is addressed in the FOR-
TRAN manual. Can anyone suggest a method to get line numbers on
my source file and have the compiler reference those same lines?
Help!

Sincerely yours,
Ray Battalora

Rt. 7, Box 40
Covington, LA 70433

Dumping to a MPI
Dear HUG,

In response to Timothy Ross’s article “OKIDUMP.BAS” on Page 90
of the June issue of REMark, here is the “MPIDUMP.BAS" for Z- 100

and MPI-99G dot matrix printer.

MPIDUMP.BAS copies the basic idea from OKIDUMP.BAS, but with
a little different approach. The result is 324 seconds for a full screen
dump.

If MPI1-99G has the 7-bit graphic pattern, as OKIDATA 92 does, this
program would take only about 280 seconds to dump a screen.

For those MP1-99G owners, if you happen to hate the AP-PACK as |
do, try this one. And please read Timothy’s article along with this
program, Timothy did a very good job in explaining the fundamen-
tals.

The main difference between Timothy's and mine, is | use PEEK to get
the specific byte. The bytes of the green plane start from the 7th byte
from the COLARRAY(0) and every 3rd follows it (225 bytes total).
These values are defined in line 1080.

If you want to introduce any variables after line 1080, please in-
itialize them before line 1080. Otherwise, you will getincorrect base
address of COLARRAY. You can find more details about this on Page
10.173 of ZBASIC manual, Vol. 2.

The way to use this program is to use

B8O RUN"A:MPICUMP" ' or RUN"B:MPIDUMP" if B: is where you
' kept the file at any place you just
' finished a great picture on the screen

instead of

80 BSAVE "B:CIRCLE",O,&HDOOOD

as shown on Page 93 of the June issue. This will save you 50K bytes of
disk space.

1000 DEFINT A-Z : DIM COLARRAY(339) :ESC$=CHR§(2T)
1020 ADDR=0 :COL=0 :COLSTEP=6 :BYTE=0 :BITPATTERN=0
: TOPBYTE=0 :BOTBYTE=0
1040 SETUP$=ESC$+CHRS(30)+ESC§+CHRS(19)+
ESC$+CHR$ (22)+STRINGS (4, 10)
' this set up will give you the closest
aspect ratio to the screen's
1060 GRAPH$=ESC$+CHR$(23) : LMARGIN§=STRINGS(T5,64)
GRAFCRLFg§="86"
1080 ADDR=VARPTR(COLARRAY(D))
BOTBYTE=TOPBYTE+672
1100 OPEN "O",1,"ipti:" : PRINT #1,SETUPS;
1120 ' first slice is special, we only
care for left 4 bits

1050

: TOPBYTE=(ADDR+6) :

1140 GET (0,0)=(7.224),COLARRAY
1160 PRINT #1,GRAPHS; LMARGINS:
1180 FOR BYTE=BOTBYTE TO TOPBYTE STEP -3
1200 BITPATTERN=PEEK(BYTE)\16+64

‘right shift 4 bits, set graphic bit
1220 PRINT #1,STRING§(2,BITPATTERN);
1240 NEXT BYTE : PRINT #1,GRAFCRLF§;

1260 ' following slices are simple,
the highest bit is ignored by MPI printer
1280 FOR COL=2 TO €32 STEP COLSTEP

1300 GET (COL,O0)—(COL+T,224) ,COLARRAY
1320 PRINT #1,GRAPHS; LMARGING:
1340 FOR BYTE=BOTBYTE TO TOPBYTE STEP -3
1360 BITPATTERN=PEEK(BYTE) OR 64

'set graphic bit
1380 PRINT #1,STRING$(2,BITPATTERN);
1400 NEXT BYTE : PRINT #1,GRAFCRLFS:

1420 NEXT COL : PRINT #1,CHR$(12);ESCS;
CHR$(21) ;ESC$: CHR$ (20) ;
1440 END

Again, thanks to Timothy's good job.

Dave Hoo
547 Hawthorn Lane
Winnetka, IL 60093

6

REMark * October + 1984

Anti-Computer-Zapper
Dear HUG:

Thought possibly others might save valuable programs by the instal-
lation of the FAIL SAFE control, which | have used since buying a
Heath Computer in 1977,

| have enclosed a diagram of the FAIL SAFE unit, which can be easily
assembled from available components. The parts required are as
follows:

A. A3 x5 X 7 inch aluminum chassis and cover.

B. A 3 pole single throw relay with 110 VAC coil.

C. A push button type switch - contacts normally open.
D. A push button type switch - contacts normally closed.
E. Output socket - 110 VAC cord and plug.

4 & ¥

fl_:\e |
5 b\ R

110 VAC

<

110 VAC

g
FAY

110 VAC

RY COIL

uperation of the device is as follows. Pressing PB1 (the normally
open switch) actuates the relay feeding power to the computer, disk
drives, and printer. To disconnect power to these units press PB2.

The FAIL SAFE feature is that should the power fail, the relay will
drop out, thus disconnecting power to all of the units. Power will not
come back on until PB1 is again pressed.

Sincerely,

D.C. French
3396 Adaline Drive
Stow, Ohio 44224

FORTRAN Reader Responds
Dear William:

This is in response to your inquiry in the August, 1984 issue of
REMark regarding the problem with the line feeds.

FORTRAN uses thefirstcharacteron the printline as carriage control
and you have come close to solving that problem with the “X" in the
FORMAT, but it should either be 50 FORMAT(" *.2F10.5) or 50
FORMAT(1X,2F10.5), either will print a space as the first character.
Your X"’ causes the X to appearin column 1, which is ignored when
it appears on the screen since FORTRAN uses that column directly,
However, when printing to disk, the same form is used except that
when you list the disk file, it is no longer under the control of a
FORTRAN program, thus making column 1 a “‘normal’ character.

The other thing that you noticed is that only a carriage return is
written to the disk. This is normal for a CP/M system with almost any
printer driver supplying the additional line feed. Under HDOS, only
the line feed is saved with the driver providing the carriage return.

FORTRAN recognizes several carriage control characters, most
commonly the 0, 1, and +, AQ printed in column 1 (FORMAT(‘0’,...))
causes double spacing (0D 0D written to disk) while a + (FOR-

MAT('+',...)) suppresses all carriage control for that FORMAT state-
ment. This last can be handy for overprinting or concatenating strings
of data, just remember, somewhere along the line, to insert your own
carriage control. The ‘most interesting’ carriage control character is
the 1 which causes a page tab (FORMAT(1",...)). The fun starts if you
are trying to print a number with thefirst digitof 1 and you forget that
column 1 is carriage control (i.e. if NUM=123 and you use FOR-
MAT(13)). The paper will fly to the top of the next page and 23 will be
printed. Thisis particularly thrillingif itis in some kind of a loop. (i.e.,
assuming unit 5 is the printer.)
DO 33 J=100,199

33 WRITE(5.72)J
T2 FORMAT(I3)

That's 99 page tabs with 01, 02, 03, ..., 99 printed at the top of each
successive page. Better yet is the following:
DO 29 J=1,3200

29 WRITE(S5,77)
77 FORMAT('1')

This little loop is sometimes called “skip to top of box," and can be a
bit hair raising. | teach FORTRAN and Pascal programming and it is
usually obvious when a student forgets about FORTRAN's carriage
control characteristics.

If you, or anyone else, have other questions, feel free to drop me a
note.

Sincerely,

Roy Coleman
10549 S. Homan Ave.
Chicago, IL 60655

Vectoredto 63 o=

EMULATE

Let your H89 read and write to:

OSBORNE XEROX MORROW
CROMEMCO EPSON TELEVIDIO
DEC VT180 ACTRIX TRS-80

and others — over 20 formats

Requires HEATH CP/M 2.2.03, 2.2.04 or CDR
BIOS.

Include your CP/M serial number when ordering.
For H37 controllerc.ceveeveee $569
For CDR controller

AUTOMATIC KEY REPEAT for H89/H19
simple installation —
Kit . . . $32 Assembled . . . $40

REAL TIME CLOCK for H89
Kit . . . $55 Assembled . . . $65

Check our discount prices on products from:
CDR Systems and The Software Toolworks®

Call or write for catalog. CA Residents add 6% tax.
WE PAY POSTAGE Specify Disk Format on Software.

ANALYTICAL PRODUCTS
40793 Gibbel Road

714/929-6919
Hemet, CA 92343

REMark * October + 1984

'We give you

Site. -
ity
A _. i._h??;__—,i..,f

WIN an

our finest!

H-151PC Computer System!

HUGGIES everywhere, the perfect part-
ners at your Heathkit Electronic Centers
are really giving their best this time! One
top-quality H-151 PC computer to be
awarded at each of the two big HUG
conferences in November.

We offer the kind of support you want.
A friendly, trained staff that speaks your

language. Plenty of software and great
hardware. Plus qualified in-store service
on Heath/Zenith equipment.

So, stop by the local stores’ booth at
either conference. We're showing our
support with an H-151 prize donation.
And we hope you're one of the lucky
ones to win!

Me Join us at...

Capital HUG Conference,
November 3,
Arlington, VA

Where you get more by doing

*Units of Veritechnology Electronics Corporation in the U.S.

Western Regional HUG Conference,
November 10 & 11,
Anaheim, CA

Heathkit]

Electronic

Center *
VEC-856

R AR e N TS e L. e e v e L

Western Regional

HUG Conference

November 10-11, 1984

HUGgies who attended the International HUG Conference this year
know the feeling! The feeling of meeting other HUGgies from across
the country. The feeling of meeting and talking to Heath/Zenith
related vendors, whose products they use. The feeling of meeting the
people from National HUG, and the feeling of joy after buying that
longed-for product at a special low price. But many HUGgies,
especially from the West, have not been to Chicago and don’t know
that feeling. So why not have a HUG Conference in the West?2 That's
what the Western Regional HUG Conference is all about.

The Western Regional HUG Conference will be held November
10-11, 1984, at the Disneyland Hotel in Anaheim, California. Pat-
terned after the International Conference, the Western Regional
HUG Conference hopes to bring that flavor to the West. The HUG-
gies will be there! The Heath/Zenith related vendors will be there!
The “conference specials’ will be there . . . and lots, lots more.

There will be a full program of speakers, some of them better known
than others, covering a variety of topics. Speakers include Jim
“Blackmax’’ Buszkiewicz on the HUG-SIG Bulletin Board, and Walt
Bilofsky on quality software. Ron Johnson and Wayne Wilson of
Heathkit will demonstrate and discuss HERO Jr. The Special Guest
Speaker will be Adam Osborne, whose influence on the microcom-
puter industry and the microcomputer publishing industry is well
known. He's an exciting speaker. There will be a panel discussion
that includes Adam Osborne and Walt Bilofsky.

A special feature will be a presentation by Susan Hayes, of the
Software Toolworks. Her talk will be addressed TO WOMEN ONLY.
The subject is “Computer for Women -- How To Do It.” Perhaps this
is the answer for the “‘computer widow."’

The National HUG staff will be represented at the conference. Bob
Ellerton, Jim Buszkiewicz and others will be there to answer your
questions and sign up new members. Here's your chance to meet
them “in person.”

Many vendors present at the National Conference will come to the
Western Regional HUG Conference. They include Coftware Wizar-
dry, Software Toolworks, Trionyx Electronics, CDR Systems, Inc.,
Sunflower Software, Husker Systems of Nebraska, Colorworks and
many others. Look for special sales. Of course, a Heathkit booth will
be open, and we can only guess at what goodies will be offered to
HUGgies.

A highlight of the conference will be the dinner on Saturday night. A
relaxed and congenial atmosphere will prevail at the Disneyland
Hotel, where a delightful meal will be served. But after the meal the
excitement will build as the prize winners are announced. Smaller
prizes are awarded first, then the grand prize, an H/Z-100 Computer
with Winchester drive! Those present at HUGCON |1l recall the
generosity of Heathkit President, Bill Johnson at the prize drawings.
We hope that spirit will continue at the Western Regional HUG
Conference.

If you are interested in attending, write for registration information
to: Conference Coordinator, 1555 North Orange Grove Ave.,
Pomona, CA 91767.

Conference Schedule (Preliminary)
(Subject to last-minute changes)

SATURDAY, NOVEMBER 10TH
9:00 AM -- Vendor Area opens

10:00 -- BOB ELLERTON, (National HUG)
“Opening Remarks & Announcements’
10:10 -- RAY DICK, (Heathkit Western Regional Manager)
*Remarks”
10:20 -- JIM BUSZKIEWICZ (National HUG)
“The HUG-SIG Bulletin Board &
HUG Program Submittals’’
11:00 -- GEORGE NAJARIAN (Najay Systems) &
KENNETH ADCOCK (Programmer)
““How to Modify the H-89 and the H-100"
Noon -- Break for Lunch
1:30 -- ADAM OSBORNE (Entrepreneur)
“’Looking to the Future”
2:00 -- WALT BILOFSKY (Software Toolworks)
*Producing Quality Software”
2:30 -- CHARLES FLOTO (Editor/Publisher)
On Current HUG Concerns:
““Declining User Support from Heath/Zenith"
3:00 -- PANEL: Osborne, Bilofski, Floto

“Impact of User Groups in the
Microcomputer Industry”’

6:00 PM -- Vendor Area Closed for the Day

7:00 PM -- 9:00 PM HUG DINNER -
Prizes, awards & guest speakers
Dinner Guests include:
WILLIAM E. JOHNSON, President of Heathkit,
JOSEPH M. SCHULTE, President of V.E.C.,
ADAM OSBORNE

SUNDAY, NOVEMBER 11TH

9:00 -- Vendor Area Re-opens
9:30 -- BOB ELLERTON (Manager, National HUG)
“’Special Announcements’’
9:45 -- RON JOHNSON & WAYNE WILSON (Heathkit)
“‘Capabilities of HERO Jr'*
10:45 -- JOHN STUBBE (Mt. San Antonio College)
“Adapting Mainframe l|deas to the Micro”
11:15 -- SUSAN HAYES (Software Toolwaorks)
<<< FOR WOMEN ONLY !! >>>
“‘Computing for Women -- How To Do It”
Noon -- Break for Lunch
Special Session on ‘Computers in Education”
1:30 -- LES STAHLER, (AnaHUG)
Introduction of Panel Participants
2:30 -- PANEL: “Educational Software”
(Participants to be Announced)
4:00 -- Meeting adjourned

5:00 PM -- Conference Closed

REMark + October = 1984

MORE PRODUCTS . . . MORE QUALITY . ..
FOR HEATH/ZENITH COMPUTER USERS

¢ |.-_—-'-‘
;A=

Entertainment Data Entry
Programs and Database
Utilities

Disk Management
Utilities

* 19 Products for HDOS users

* 30 Products for CP/M-80 users

* 13 Products for ZDOS users

* 14 Products for Z150/Z160 users with MS-DOS

Communication
Utilities ? » > > > ANSWERS Fhigriclal
Software

Business/

Decision Management
Software

QUALITY COMPUTER PRODUCTS . . . AT A FAIR PRICE

N T e

- | FREE 1984 SOFTWARE CATALOG
Gener ic Sﬂf fware FOR FASTER DELIVERY
P. 0. Box 790 - Dept. 104R ERSF R SRl

Marquette, MI 49855

(906) 249-9801 ;
10 a.m. - 5 p.m. EST ATTENTION SOFTWARE AUTHORS

GENERIC SOFTWARE is interested in high quality
and well documented microcomputer software.

DEALER INQUIRIES WELCOME GENERIC offers professional packaging, and high
If you are a Heath/Zenith Dealer and need soft- royalties. If you are interested in making money
ware for your customers, call or write for more from the software you develop, then ask for our

details about our dealer program. FREE booklet, Software Author’s Kit.

Practical File
Management

Part 5 - We Add the Final Modules

This article puts the last of the modules in ourfile handler. We'll add
113 lines of programming which will let us delete records either
singly, by the month, or by the whole year. Not only is this a
convenient way to handle stocks and bonds, but it also shows
various ways of handling options in searching the key field.

Owners of 48K systems may need to select one feature or the other
from this months work. With my 64K system | only have 15926 bytes
of RAM left with the program loaded. However, my BIOS is set up for
both hard and soft sectored controllers, so it's bigger than some.
Anyway, next month we'll remedy the situation by putting the whole
program on a diet and saving a whole bundle of RAM. This will give
us the room we need to work on files.

David E. Warnick
RD#2 Box 2484
Spring Grove, PA. 17362

Figure 1isaflow chartof the first part of our deletion sub-routine. We
begin with the screen setup. On line 8070 we input an option for
single, monthly, or yearly deletions, or permit pressing the red key to
exit the deletion mode. This time if the red key is pressed, program
execution is sent to another part of the sub-routine rather than back
to the menu. Line 8080 tests the input if it was not the red key, and
makes sure one of the permitted options was selected. With this
done, we set the screen up in the month, date, year fashion this
program uses so often.

Lines 8190 and 8200 bypass unnecessary inputs if only a year or a
year and a month are required, depending on the option we selected
above. The inputs required are then taken on lines 8210-8340 and
are displayed at the correct locations on the screen,

BODO PRINT FNCA$(2,1);EE$

8010 PRINT FNCA$(3,36):"DELETE MENU"

8020 PRINT FNCA$(5,21),"Y — DELETE ALL ENTRIES FOR A YEAR"
B030 PRINT FNCA$(7.21);"M - DELETE ALL ENTRIES FOR A MONTH"
8040 PRINT FNCA$(9,21);"S — DELETE A SINGLE ENTRY"

8050 PRINT FNCA$(13,21);"SELECT OPTION FROM THE LIST ABOVE"
8060 PRINT FNCA$(24,21);

"PRESS THE RED KEY TO RETURN TO THE MENU";FNCA$(1.1)
0$=INPUT$(1):IF O0$=CHR$(27) THEN O$=INPUT$(1)

:IF 0§="Q" GOTO 10000

IF 0$<>"¥Y" AND O$<="M" AND O$="S"

THEN PRINT FNCA$(18,21);

"YOU MAY ONLY SELECT Y,M, OR S. ENTER AGAIN.":

FOR X=1 TO 500:NEXT X:PRINT FNCA$(18,1);EE$:GOT0 8060

8070

BOBO

8090 PRINT FNCA$(2,1);EE$
8100 PRINT FNCA$(3,21);"DELETE OPTION"
8110 PRINT FNCA$(9.21);"MONTH"
8120 PRINT FNCA$(11,21);"DAY"
8130 PRINT FNCA$(13,21);"YEAR"
8140 PRINT GM§

8150 PRINT FNCA$(10,27);"zz"
8160 PRINT FNCA$(12,27);"zz"
8170 PRINT FNCA$(14.27);"zz"
8180 PRINT GO$

8190 IF 0§="Y" GOTO 8310

8200 IF O§="M" GOTO 8260

B210 PRINT FNCA$(18,21);
"ENTER THE DATE TO DELETE AS 2 DIGITS (01-31)"
8220 PRINT FNCA$(11,27);
B230 D$=INPUT$(2)
8240 PRINT D§
8250 PRINT FNCA$(18,1);EL$
8260 PRINT FNCA$(18,21);
"ENTER THE MONTH TO DELETE AS 2 DIGITS (01-12)"
B270 PRINT FNCA$(9,27):
8280 M$=INPUT$(2)

REMark * October « 1984

8290 PRINT M$
8300 PRINT FNCA$(18,1);EL$
8310 PRINT FNCA$(18,21);
"ENTER THE LAST 2 DIGITS OF THE YEAR TO DELETE"
8320 PRINT FNCA$(13,27):
8330 Y$=INPUT$(2)
8340 PRINT Y§

BulLD
DATE

MESSAGE

81 NARY
SEARCH

FLAG
RECOARD

0 _ —

SEARCH
BACK

SEAHCH A

ANY REY

FRONT

—

1]

T
AGAIN

Figure 2

We continue with Figure 2. Lines 8360-8380 build the date to be
searched for, depending on the option selected. We then inform the
operator that searching is in progress. Any time an operation is likely
to take more than a few seconds, it’s a good idea to put a message on
the screen to tell the operator that something’s happening. We're
spoiled by the speed of our computers, and a minute with no indica-
tion of action can seem like days. With thisdone, we go into a binary
search routine. Lines 8450 and 8460 permit searchingthe year orthe
year and month columns of the date field by taking the first 2 or 4
characters from the key field. If you don’t understand the MBasic
function LEFT$, you should look up LEFT$, RIGHT$, and MID$ in
your manual. They permit selecting part of a string as specified in the
parenthesis after the function name.

If no match is found, A% becomes greater than B% and line 8420
directs execution to line 9000 where the operator is informed and
permitted to continue, If a match is found, the record number is
assigned to KR% (Kill Record) and the operator is informed that the
deletion is being made. We don't actually delete the record. Instead,
we place an asterisk in the value field as a “FLAG” so it can be
skipped when recopying the file at the end of this module. This is
done on lines 8530-8550. We can’t make any changes to the date
field. If we did and further deletions were made, selection of that
record could then confuse the binary search.

The deletion we've done is fine if a single entry is to be deleted. Line
8560 directs 2xecution forward to line 8700 if this is the case (option
S selected). If not, lines 8570-8620 cause the computer to step
backward, one record at atime, through the file and compare the key

field to the delete date input by the operator. If a match is found,
anotherflag s inserted. The computer continues to step back th rough
the file until a match is not found. When this happens, lines 8630-
8690 do the same thing by stepping forward through the file. This
method works because the sorted file has all entries for one month or
one year together in the key file, and the key file is used to direct the
stepping through the datafile. Lines 8580 and 8650 prevent stepping
outside the limits of the file.

8350 PRINT FNCA$(18,1);EL$

8360 IF 0§="S" THEN DR$=Y$+M§+D§:GOTO 8390
8370 IF 0$="M" THEN DR$=Y$+M§:GOTO 8390
8380 DR§=Y$

8390 PRINT FNCA$(18,21);

"NOW SEARCHING FOR THE REQUESTED ENTRY"
8400 A%=1
8410 BI=NRY
8420 IF A%>BE GOTO S000
8430 CET=INT((AZ+BE)/2)

8440 GET #1,B%(CT)

8450 IF 0$="Y" THEN R$=LEFT$(A$,h2):GOTO 8480
8460 IF 0§="M" THEN R$=LEFTS$(A§.4):GOTO 8480
8470 R$=A$

IF R§<DR§ THEN AZ=C%+1:GOTO 8420

IF R§>DR§ THEN B¥=C%-1:GOTO 8420

8500 KR¥E=C%

8510 PRINT FNCA$(18,1);:EL§

PRINT FNCA$(18,21);"ENTRY FOUND — DELETION BEING MADE"
B530 RNZ=KR%

8540 LSET a=a|l|r

8550 PUT#1,BZE(RNE)

IF 0$="S" GOTO 8700

8570 RNZ=RNZ-1

IF RN%<i GOTO 8630

8590 GET #1,B%(RNE)

8600 IF 08$="Y" THEN R$=LEFT$(A$.2)

IF 0$="M" THEN R$=LEFTS(A$.4)

8620 IF R§=DR§ GOTO BS540

RN$=KRE

8640 RNE=RNE+1

IF RN%>NRE GOTO 8700

8660 GET #1,BE(RNE)

8670 IF O$="Y" THEN R$=LEFT$(A$,2)

8680 IF 0$="M" THEN R§=LEFT§(A$.4)

8690 IF R§=DR§ THEN LSET B$="*": PUT#1,B%(RNT):GOTO 8640
PRINT FNCA$(18,1);EL§

8710 PRINT FNCA$(18,21);"DELETION COMPLETED"
8720 FOR X=1 TO 500:NEXT X

8730 GOTO 8OO0

9000 PRINT FNCA$(18,1);:EL$

9010 PRINT FNCA$(18,21);

"THERE'S NO ENTRY FOR THE DATE YOU REQUESTED"
9020 PRINT FNCA$(20,21):"PRESS ANY KEY TO CONTINUE"
9030 W§=INPUT$(1)

9040 GOTO 8000

Figure 3 completes the deletion module. We've found all the records
we want to delete and have flagged them with an asterisk in the value
field. Then, we pressed the red key and program execution was sent
to line 10000. Lines 10000-10040 let the operator know what's
going on. Then line 10050 builds a new file name. It has the same
drive and file name as the data file, but the extension is .$$$. This
extension is part of the convention for our operating system and
indicates a temporary file. We'll read every record from the data file,
and check for the flag we put there. If there’s no flag, we don’t want
the record deleted, so we’ll write it to the temporary file. The variable
RN% keeps track of how many records we write in this manner. This
operation is performed by lines 10090-10170. When completed, the
temporary file contains all the records we didn't flag for deletion. So,
we can close both the data and the temporary files on lines 10230
and 10240. We then KILL the data file. This is the same as your
operating system command, which ERAses or DELetes files from the
disk. It's no longer there. (Actually, it's there until we write over it. It
was just removed from the disk directory.) We then use the NAME

12

REMark * October * 1984

ﬂ@

RECURDS

{1

CLOSE
FILES

KLk

[
RENAME
FILES

OPEN
FILE

¥

Figure 3

command to change the name of the temporary file to the name of
the data file. A check of your disk directory will show that only a
.DAT file exists. The .$$$ file is gone because we changed its name.
The original data file is gone because we KiLLed it. We could have
saved the old data file for archive purposes by changing line 10250
to read:

10250 NAME FL§ AS Di§+":"+F§+" .BAK"

It would then exist on the disk as a backup file. Again, this is
acceptable to our operating system and is part of the extension
conventions shown in the manual.

We wrap up the module by printing an operator message and
reopening the data file on lines 10310 and 10320. Then we direct
execution to the sort module. There’s no need to go to the menu first
as a sort is always required on a file which has been rearranged this
way.

10000 PRINT FNCA$(2,1);EE$
10010 PRINT FNCA$(3.21):
"ALL RECORDS TO BE REMOVED HAVE BEEN MARKED"
10020 PRINT FNCA$(5,21);
"NOW COPYING NEW FILE WITHOUT DELETED RECORDS"
10030 PRINT FNCA$(8,21);"— — — PLEASE WAIT — - ="
10040 PRINT FNCA$(11,21);"NOW WORKING ON RECORD NUMBER"
1D050 Tﬂ-Du+“: r|+n+n y I!+llmll
10060 OPEN "R",#3,TF$.10
10070 FIELD #3,6 AS D§.4 AS E§
10080 RNE=1
10090 FOR X%=1 TO NRE
10100 GET #1,X%
10110 IF LEFT$(B$,1)="*" GOTO 10170
10120 LSET D§=A$
10130 LSET E$=B$
10140 PUT #3,RN%
10150 PRINT FNCA$(11,50);RNE
10160 RNZ=RNE+1
10470 NEXT X%

10180 NRE=RNE-1
10490 PRINT FNCA§(18,1);EE$
10200 PRINT FNCA$(18,21);"ALL RECORDS TRANSFERRED"
10210 PRINT FNCA$(20,21);
"DISK FILE OPERATIONS BEING PERFORMED"
10220 PRINT FNCA$(22,21);"— — — PLEASE WAIT - - ="
10230 CLOSE #1
10240 CLOSE #3
10250 KILL FL§
10260 NAME TF§ AS FL$
10270 PRINT FNCA$(18,1);EE$
10280 PRINT FNCA$(18,21);"DELETION OPERATION COMPLETE"
10290 PRINT FNCA$(20,21);"SORT OPTION SELECTED AUTOMATICALLY"
10300 FOR X=1 TO 500:NEXT X
10310 OPEN "R",#1,FL$, 10
10320 FIELD #1.6 AS A$.4 AS B§
10330 GOTO 20000

We complete our program by adding the lookup module. This
permits us to specify key data from the console and display its
associated data on the screen. In our case, if the date requested
doesn’t exist in the file, the entries immediately before and after it
will be displayed.

BUILD
DATE

BINARY
SEARCH

Figure 4
Figure 4 begins our lookup module. We set up the screen and take
inputs for the date to be looked up. Again, the red key provides our
exit to the menu. Lines 11280-11350 provide the binary search
routine to find the record we want. If a match cannot be found, line
11300 directs program execution to line 12000.

If the date we selected is found, the data is displayed by lines
11360-11380. Because we don’t know how long the operator will
want the information displayed, we stop program execution with a
“PRESS ANY KEY'" message on line 11380 and the INPUT$(1)
function on line 11390. When the operator is finished with the data,
pressing any key permits program execution to continue. The prog-
ram then loops back to line 11000 to perform the lookup operation
again.

REMark * October * 1984

13

11000 PRINT FNCA$(2.1);EE$
11010 PRINT FNCA$(3,21);"LOOKUP OPTION SELECTED"
11020 PRINT FNCA$(9,21);"MONTH"
11030 PRINT FNCA$(11,21);"DAY"
11040 PRINT FNCA$(13,21);"YEAR"
11050 PRINT GM§
11060 PRINT FNCA$(10,27);"zz"
11070 PRINT FNCA$(12,27);"zz"
11080 PRINT FNCA$(14.27);"zz"
11090 PRINT GO§
11100 PRINT FNCA$(24,21);
"PRESS THE RED KEY TO RETURN TO THE MENU":FNCA$(1.1)
11110 PRINT FNCA$(18,21);
"ENTER THE MONTH TO LOOKUP AS 2 DIGITS (01-10)"
11120 PRINT FNCA$(9.27);
11130 M$=INPUTS(2)
11140 IF M$=CHR$(27)+"Q" GOTO 1000
11150 PRINT M$
11160 PRINT FNCA$(18,1);EE$
11170 PRINT FNCA$(18,21);
"ENTER THE DAY TO LOOK UP AS 2 DIGITS (D1-31)"
11180 PRINT FNCA$(11.27);
11190 D$=INPUT§(2)
11200 PRINT D§
11210 PRINT FNCA$(18,21);EL$
11220 PRINT FNCA$(18,21);
"ENTER THE LAST TWO DIGITS OF THE YEAR TO LOOK UP"
11230 PRINT FNCA$(13,27);
11240 Y$=INPUT$(2)
11250 PRINT Y$
11260 LU$=Y$+M$+D§
11270 PRINT FNCA$(18,1);EL$
11280 AZ=1
11290 B%=NR%
11300 IF A%>B§ GOTO 12000
11310 CE=INT((AZ+BE)/2)
11320 GET #1,B%(C%)
11330 IF A$<LU$ THEN A%=C%+1:GOTO 11300
11340 IF A$>LU$ THEN B¥=C%-1:GOTO 11300
11350 RNE=CE
11360 PRINT FNCA$(18,21);"THE VALUE OF ";F§:" ON"
11370 PRINT FNCA$(19,21);M§;"-",D§;"-":Y§;" WAS " ;CVS(BS)
11380 PRINT FNCA$(22,21);"PRESS ANY KEY TO CONTINUE"
11390 W§=INPUT$(1)
11400 PRINT FNCA$(18,1);EE$;FNCA$(9,26):LES:FNCA$(11,.26);
LE$: FNCA$(13,26);LES
11410 GOTO 11100

DaTa
BEFORE

AGAIM

Figure 5

Figure 5 shows the action taken when the lower limit of the binary
search range, A%, becomes greater than the upper limit, B%. This
only happens if the data we're looking for doesn't exist in the data
file. Line 12000 informs the operator that the requested information

is not in the file. Lines 12020-12050 look up the last entry before the
requested date and display that information. If B% was zero, the
requested date was prior to any in the file and line 12020 provides an
appropriate message.

Lines 12060-12090 provide a similar function for the next entry after
the requested date. Lines 12100-12110 provide a delay until the
operator presses a key. The program then cycles back to the begin-
ning of the lookup option.

12000 PRINT FNCA$(18.21):"NO ENTRY EXISTS FOR ";M§;"-":
D.;"—";Y'

12010 PRINT FNCA$(19.21);"THE TWO CLOSEST ENTRIES ARE"

12020 IF B%=0 THEN PRINT FNCA$(21.,21);
"NO ENTRY EXISTS BEFORE YOUR CHOICE":GOTO 12060

12030 GET #1,BE(BE)

12040 PRINT FNCA$(21,21);MIDS(A$.3,2);"-";RIGHT§(A$.2):"-":
LEFT$(A$.2)

12050 PRINT FNCA$(21,32);CVS(B§)

12060 IF Af>NRE THEN PRINT FNCA$(22,21);
"NO ENTRIES AFTER YOUR CHOICE":GOTO 12100

12070 GET #1.B%(A%)

12080 PRINT FNCA§(22.21);MID$(A$.3.2);"-";RIGHTS(A$.2);
"=";LEFT$(A$.2)

12090 PRINT FNCA$(22,32);CVS(B$)

12100 PRINT FNCA$(24.21):"PRESS ANY KEY TO CONTINUE";
FNCA§(1.1)

12110 W8=INPUT$(1)

12120 GOTO 11400

So there you have it. A complete program to establish and maintain a
set of random files. We used the value of stocks as the data we
wanted to manage. However, this program will keep track of any
numeric value which varies with dates. It could be rainfall, high or
low temperatures for weather buffs. Or, how about the number of
kilowatt-hours used for the energy conscious. Experiment and come
up with applications of your own.

Next month I’ll show you how to keep all the features of this program
while reducingitin size. We'll also discuss modifying and customiz-
ing it to your own needs. Since we started discussing file handling 9
months ago, you have added random files and a pseudo-data-base
system. Ahead, we've got sequential files and then, who knows. Your
suggestions are welcome.

Please remember that these articles and the programming in them
are copyrighted by the author. You’re more than welcome to use
them for your own personal non-commercial applications.

See you next month. *

OLUNG?

o iy y _n |

Please let us know 8 weeks in
advance so you won’t miss a
single issue of REMark!

14

REMark + October = 1984

i

PRRSONAL PINANCTAL ACCOUNTI

s a

$245.47
£0,94
s0.00

*CARRYOVER: *AEHRECKG S3IA7,RQ
*FROM LAST: oRE CARDS sa.ap
MONTH CASH# sSpLop
I A RS EE R R R
*CARRYAVER:
*TO NEXT
*MONTH H
(SRS R SRS

AECHRCKGS
CRD CARDS
..’CASHID

5943.05
Sa.00
54,00

51515%.78
SH.ni
<0, pg

C HELCNX RERTI &

)

UEGEH B W

RSIIIIPIFRI IS

THECK
NAT!'L BANK
ELECTRIC CO

To increase our knowledge of commands and formulas, we will
expand our first assignment -- Profit and Loss. We are going to
expand the report to cover a 12 month period -- “YEAR'. We will
add forecast or projections for the remaining 9 months. This ““mod-
el’” will be larger than our screen. This will show us how to handle
larger “workscreens”. We will also explain how to “lock/protect”
labels and data and we will try a “window split’’.

Lets define our second assignment -- PROFIT & LOSS. The ““model”
will be nearly the same for the first three (3) months (same data). The
next nine (9) months will come from projections that we will calcu-
late from prudent business forecasting. If we examine the Total Sales
figures for January, February and March; we will find that Total Sales
increased approximately 8% per month. Further, we find that Total
Costs increased about 4% for these three (3) months. The G&A
Expenses were up 10% and Selling Costs went up 17% per month.
These figures look pretty realistic for a growing company just getting
started. As Sales increase, Costs do not increase as fast because we
have more efficient purchasing and personnel usage. However, our
G&A Expenses and Selling Costs increase at a faster rate because we
had to increase our staff, advertising, travel, etc. We will assume that
these percentages will prevail for the nine (9) months. Does that
seem reasonable? Remember that when the “model” is setup on a
spreadsheet, the projections can be and should be changed periodi-
cally. This is easy to do! Before we proceed, let me define two terms
as| will be using them in this assignment -- ““template” and “‘model”.
“Template”” will include all of the labels and formulas without any
data. ““Model” will be the complete spreadsheet program consisting
of the “template’ and all of the data. | hope that you will accept these
definitions at this time.

Now readers, what do you think we should do first? | hope that you
answered that we should prepare a “‘Spreadsheet Preparation
Form”! | would like to add one more step. To keep the assignment
simple, | would like to see the assignment broke down into smaller
parts. How many parts do you think we need? | think that four (4)
parts might be a good start. Part 1 would be nearly a duplicate of our
first assignment, but we will change our YTD (Year To Date) to 1st-Q
(1ST QUARTER). Part 2 will cover the following three (3) months
with a 2nd quarter total column. Part 3 will be the next 3 months and
a 3rd quarter column. Part 4 will be the last three months of the year
with a 4th quarter total column along with a Year Totals column.

We have already defined most of math expressions that will be

AR PR AR E AR AR AR AR RN AR RN AR R RN SRR AR R R R AR AR

REAR kR A R R R AR AR RSN AR AR AR TR R AR R R R R

5 NN
0Dk, v 8 : 1§]

S22, 72
s0.09
sSeL. a0

. an
S0, a8
sn.ne

en,
sp.n
5A.9

s
seynn a1
sa.0n Sf.An
il‘i‘l'ii‘...liil."
sol aa 545,23
1.a9 S » XN sa.a
a,an 0,00
dhhadadbEambn

5571 .82
50,00
Sa.0n

§245.98% $479.54
Sa.0n S0, ag
so.na ; .

wARERE

TEFEh

MOR (GE

— BAY NG

.0
S0.0
$n.6
so.n

$245.99
4.9

50,
cn.

L Vg'n
404,49
$214.95
5169.72
(874, 2/)
ST T74
S§5AT_ 98
L e I |

')

3

H. W. Bauman
493 Calle Amigo
San Clemente, CA 92672

required in the previous assignment. Just change YTD to read 1st-Q.
Lets think how we would describe April’s Total Sales with a math
expression. Itis easy! To show April’s Sales as an increase of 8% over
March’s Sales, we need to multiply March’s Sales by 108% or 1.08
(either way is correct). May’s Sales would be 8% larger than April's
Sales, so we multiply April's Sales by 108% to obtain May’s figure.
The same idea would work for Total Costs except that we would use
104% . G&A Expense figure would be 110% and Selling Costs would
be 117%. Is that clear?

Because we will use March as a “base’”” month for calculating the
increases the March cells will not require a formula. The April cell
will need the formula and we will copy this formula into the remain-
ing eight (8) months of the ““template’’, The 2nd, 3rd and 4th Quar-
ters will use the same expressions that we used in the first quarter.
That completes all the math that we will need for this assignment.
Wasn't that easy? Be sure that you do not let math scare you when
working with spreadsheet ““models” because they always come out
pretty easy!

My LOTUS 1-2-3 step-by-step procedure starts with the first assign-
ment “model’’ -- P—LTEMP1. (We will call this second assignment
P—LTEMP2.) | will not re-tell how to “load” 1-2-3 or the file
P—LTEMP1. You should know this. | will not tell you when to SAVE
your work or how to SAVE it, as you should know this. You have
done these procedures many times in the first assignment, Time to
start:

1) Press /FR and press right arrow key until your pcinter covers the
P—LTEMP1 filename and press Return.

NOTE: You should now see your first assignment as we left it. We
will use this as our “‘starting point”. We will start by making a few
changes to this “model"”.

2) Press F5 key, type E5 and press Return.

NOTE: We are changing the YEAR TO DATE label to our new 15T

QUARTER label as we have shown on our “Spreadsheet Preparation
Form™,

REMark * October + 1984

15

I will show my four (4) “Spreadsheet Preparation Forms” below (PeachCalc/SuperCalc will look nearly the same, but Multiplan will

require renaming the cells) for the LOTUS 1-2-3 software:

FORM #1 FORM #2
A B C D E P G H I
1 SPREADSHEET COR
+HHHH
2
3 PROFIT & LOSS
4
5 1984 JAN FEB MAR 1st-Q APR MAR MAY 2nd-Q
5 BEBERERRE AR AR RERERBARERRRIRRRRRERRRFRBRERRR RN RRRERB R RRRRRERRES
7 SALES S(BT..DT) +D7*1.08 +F7*1.08 +G7*1.08 S(F7..HT)
8 COSTS S(B8..D8) +D8*1.04 +F8*%1.04 +GB*1.04 S(F8. .H8)
9
10G.P. +B7-B8 +C7-C8 +D7-D8 S(B10..D10) +F7-F8 +G7-G8 +HT-H8 S(F10. .H10)
11
12G&A S(B12..D12) |+D12%*1.10 +F12%1.10 +G12%1.10 S(F12..H12)
13SELLING S(B13..D13) |+D13%1.17 +F13%1.17 +G13%1.17 S(F13. .H13)
14
15NET +B10-B12-B13 +C10-C12-C13 +D10-D12-D13 S(B15,..D15) |+F10-F12-F13 +G10-G12-G13 +H10-H12-H13 S(F15. .H15)
FORM #3 FORM #4
J K L M 0 P Q R
1NER CO.
2
3
4
5 JUL AUG SEP 3rd-Q ocT NOV DEC 4th-Q YEAR TOTALS
6
7 +HT*1 .08 +J7*1.08 +KT*1.08 S(J7..LT) +L7#1.08 +N7*1.08 +07*1.08 S(NT..P7) +GT+IT+MT+Q7
8 +HB8*1,04 +J8%1.04 +K8%1.04 S(J8..L7) +L8*1.04 +N8*1.04 +07%1.04 S(N8..PB) +GB+IB+MB+Q8
9
10 +J7-J8 +KT-K8 +L7-L8 S(J10. .L10) +NT-N8 +07-08 +P7-P8 S(N10..P10) +G10+I10+M10+Q10
11
12 +H12*1.10 +J12%1.10 +K12*1.10 S(J12..L12) | +L12%1.10 +N12%1.10 +012%1 .10 S(N12..P12) +G12+I12+M12+Q12
13 +H13*1.17 +J13%1.17 +K13%1 .17 S(J13. .H13) | +L13*1.17 +N13%1.17 +013%1.17 S(N13..P13) +G13+I13+M13+Q13
14
15 +J10-J12-J13 +K10-K12-K13 +L10-L12-L13 S(J15..L15)| +N10-N12-N13 +010-012-013 +P10-P12-P13 S(N15..P15) +G15+I15+M15+Q15

3) Type +1ST QUARTER and press Return,
4) Press F5, type E12 and press Return.

NOTE: Per our preparation form we must add the G&A Expenses
Total and the Selling Costs Total to the 1st quarter column.

5) Press /WGF. type T and press Return.

6) Type @SUM(B12..D12) and press down arrow.
7) Type @SUM(B13..D13) and press Return.

8) Press F5, type E5 and press Return.

NOTE: We need to Move the 1st quarter column from our report area
for now. We will Move it to an area of the “worksheet” that we will
not be using for this assignment, as seen from our preparation form.
When we are ready for it, we will Move it from the temporary storage
area back to the right column in our “template”. Watch for these
procedures in the following steps. You will also see that we had to do
this so that we could Copy our formulas to the added month's cells.

9) Press /M, type E5..E16 and press Return,
10) Type S5..516 and press Return.
11) Press F5, type S1 and press Return.

NOTE: Did you find where we stored our 1st quarter column over in
a unused area of the “worksheet’’?

12) Press HOME key.

NOTE: The 1st quarter column is gone, right? Now we can add our
new labels.

13) Press F5, type E5 and press Return.

14) Type +APRIL and press right arrow.

15) Type +MAY and press right arrow.

16) Type +JUNE and press right arrow.

17) Type tJULY and press right arrow.

18) Type *AUGUST and press right arrow.
19) Type +SEPTEMBER and press right arrow.
20) Type +OCTOBER and press right arrow.
21) Type *NOVEMBER and press right arrow.
22) Type *DECEMBER and press Return.

NOTE: | hope that you remember why we typed (4) as the first
character. Do you? If not, press the "HELP" key and you will find that
it centers our label in the cell which is 14 characters wide because
we set it for 14 for P—LTEMP1.

23) Press F5, type E7 and press Return.
24) Type +D7*1.08 and press down arrow.

NOTE: Our specifications stated that Sales would increase 8% per
month starting in April over March, We could use 108% also.

16

REMark ¢ October « 1984

25) Type +D8%1.04 and press down arrow.
NOTE: Again, we said Costs would increase 4%.

26) Press down arrow (3) times.
27) Type +D12*1.10 and press down arrow.
28) Type +D13*1.17 and press Return.

NOTE: Do you know where the 1.10 and 1.17 came from? Re-
member we stated that we would have 10% and 17% increases for
these items. NOW, we are going to use something new and very
important! We are using “COPY FORMULAS" which will save us a
lot of typing and thus might keep us from making typingerrors. To do
this you must learn new “‘terms’’. | am not going to go into a detailed
explanation of Relative Cell Address vs Absolute Cell Address. | will
show you WHAT TO DO and you can use “HELP"" key or READ
about them in your manual. To use this handy method we could not
have the ""quarter’” columns in our “template’” or 1-2-3 would try to
Copy the formulas into these columns as well, causing us many
errors. Think about this! Can you see why? If you cannot, experiment
with these columns in the ““template’ after we finish this “model’ to
see what would happen. 1-2-3 can not handle everything, but it does
very well.

29) Press F5, type E7 and press Return.
30) Press /C and Press F4 key and press Return,

NOTE: When you press the F4 key, 1-2-3 changes the Relative Cell
Address to the Absolute Cell Address, it shows this by adding the ($)
signs to the cell names.

31) Type F7..M7 and press Return.

NOTE: We want to Copy the formula from E7 (April) into F7 (May)
through the “range”” of months to M7 (December). Can you see how
this works? Check some cells in this row to see how 1-2-3 put the
correct formula in each cell. This sure beats typing all those formulas
and it reduces the chance for a typing error., LETS give 1-2-3 a “BIG
HAND"!

32) Press F5, type E8 and press Return,
33) Press/C, press F4 and Return.
34) Type F8..M8 and press Return,

NOTE: Do you want to checkup on 1-2-3 by checking some of the
cells on this row to see if 1-2-3 put the correct formula in each cell?
Before long you will believe in 1-2-3 and you will know that you
KNOW the method!

35) Press F5, type D10 and press Return.
36) Press /C, press F4 and Return.
37) Type E10..M10 and press Return.

NOTE: Copy Formula works on this expression as well. We must go
over one cell to the left for our “‘base” cell! Did you catch that?

38) Press F5, type E12 and press Return.
39) Press /C, press F4 and Return.

40) Type F12..M12 and press Return.
41) Press down arrow once,

42) Press /C, press F4 and Return.

43) Type F13..M13 and press Return.

44) Press F5, type D15 and press Return.

45) Press /C, press F4 and Return.

46) Type E15..M15 and press Return.

47) Press F5, type E5 and press Return.

48) Press /WI and Return.

49) Type E5..E16 and press Return.

NOTE: We must provide a blank column to Move our 1st quarter
data back in the correct column as per our preparation form. This
Move is our next step. Do you remember where we stored it on the
“worksheet’'? If you are not sure, you can “scroll’” to the right until

you find it. It will be at column T, not S, because we have added a
column.

50) Press /M, type $5..516 and press Return,
51) Type E5..E16 and press Return.

NOTE: Did you get the 1st quarter data back into the right column?
Check it with your ““Spreadsheet Preparation Form"’. The next steps
will provide blank columns for the 2nd and 3rd quarter data. We will
enter the required labels and formulas to these columns.

52) Press F5, type |5 and press Return.

53) Press /WI and Return.

54) Type 15..116 and press Return.

55) Type 42ND QUARTER and press down arrow.
56) Press down arrow once.

57) Type @SUM(F7..H7) and press down arrow.
58) Type @SUM(F8..HB) and press down arrow.
59) Press down arrow once.

60) Type @SUM(F10..H10) and press down arrow.
61) Press down arrow once.

62) Type @SUM(F12..H12) and press down arrow.
63) Type @SUM(F13..H13) and press down arrow.
64) Press down arrow once,

65) Type @SUM(F15..H15) and press Return.

66) Press F5, type M5 and press Return.

67) Press /WI and Return.

68) Type M5..M16 and press Return.

69) Type +3RD QUARTER and press down arrow.
70) Press down arrow once.

71) Type @SUM()7..L7) and press down arrow.
72) Type @SUM(J8..L8) and press down arrow.
73) Press down arrow once.

74) Type @SUM(J10..L10) and press down arrow.
75) Press down arrow once.

76) Type @SUM(J12..L12) and press down arrow.
77) Type @SUM(J13..L13) and press down arrow.

REMark * October « 1984

17

78) Press down arrow once.
79) Type @8SUM(J15..L15) and press Return.
NOTE: We still need the 4th quarter and year total column formulas

and labels. The year totals math expressions are the sum of the four
(4) quarter column cells for each row item.

80) Press F5, type Q5 and press Return,

81) Type 14TH QUARTER and press down arrow.

82) Press down arrow once.

83) Type @SUM(N7..P7) and press down arrow.

84) Type @SUM(NB..P8) and press down arrow.

85) Press down arrow once.

86) Type @SUM(N10..P10) and press down arrow.

87) Press down arrow once,

88) Type @SUM(N12..P12) and press down arrow.

89) Type @SUM(N13..P13) and press down arrow.

90) Press down arrow once.

91) Type @SUM(N15..P15) and press Return.

92) Press F5, type R5 and press Return.

93) Type 1YEAR TOTALS and press down arrow.

94) Press down arrow once.

95) Type +E7+I7+M7+Q7 and press down arrow.

96) Type +E8+18+M8+Q8 and press down arrow.

97) Press down arrow once.

98) Type +E10+110+M10+Q10 and press down arrow.
99) Press down arrow once.

100) Type +E12+112+M12+4+Q12 and press down arrow.
101) Type +E13+113+M13+4+Q13 and press down arrow.
102) Press down arrow once.

103) Type +E15+115+M15+Q15 and press down arrow.

NOTE: That completes all the formulas for the “template”. Carefully
check your work with that shown on your “‘Spreadsheet Preparation
Forms”, Do they match each other? If they do not, make the correc-
tions required! Now would be a good time to SAVE! | have not
suggested the times to SAVE. | left this up to you. | am not going to
provide the procedure either. You should know it! Do you? Now lets
“dress” up this “template”.

104) Press F5, type E6 and press Return.
105) Press /C and Return.

106) Type F6..R6 and press Return.

107) Press F5, type E9 and press Return.
108) Press /C and Return.

109) Type F9..R9 and press Return,

110) Press F5, type E14 and press Return,
111) Press /C and Return,

112) Type F14..R14 and Return.

113) Press F5, type E16 and press Return.
114) Press /C and Return.

115) Type F16..R16 and press Return.

NOTE: Lets Move the Company name and Report name to a position
nearer the center of our “‘template’. We will use a ’block move”’ by
defining a ‘rectangular range”’. Use “"HELP" key for more informa-
tion or refer to your manual. See if you can recognize the “block”.

Can you? We specify the “block’ by naming the corners of the
“block".

116) Press F5, type B1 and press Return.
117) Press /M, type B1..D3 and press Return.
118) Type H1..J3 and press Return.

119) Press /WGF, type C and press Return.

NOTE: Did you find that 1-2-3 had your projections/forecasts al-
ready calculated? It has been doing this for you as you entered the
formulas. Our “model” covers more than one (1) screen so we must
“scroll” to see all parts of the “model”. Lets try some new “scrol-
ling"” methods.

120) Press F5, type A5 and press Return.

121) Press F11 key (END) and the right arrow.
122) Press F11 key and the left arrow.

123) Press F11 and down arrow.

NOTE: Did you see how fast you can travel around on the “model"?
However, there appears to be a problem! | would like to keep the
right hand column of labels (1-2-3 calls them “'Titles”’) in view on the
screen all the time. It would also be nice if we did not ““scroll” into
these labels or the top label area. 1-2-3 can solve this problem! We
will “freeze” (sometimes called “locked” or “protected’’) the “Ti-
tles”” areas. To do this we must move the “pointer’” in the “cell”” one
position to the right and one position below the Title areas!

124) Press F5, type B7 and press Return.
125) Press /WT and Return.

NOTE: Now try “scrolling’’ again, like we did above using the F11
key and a arrow key. You should find that we have solved our
“problem”! Another problem would be when doing “WHAT IF”
changes where you want to see the Year Totals at the same time as
you change a particular month’s data. We will solve this using the
1-2-3 “window" feature. The “window’’ can be used many ways,
but we will use only one at this time.

126) Press F5, type D7 and press Return.
127) Press /WW and type V.

NOTE: We now have a “highlighted”’ vertical column of Row num-
bers. Try “scrolling’ and you will find that we can ““scroll” within the
“window’’. "‘Scroll” using arrow keys so that the MARCH column is
just to the left of the vertical divider.

128) Press F6 key.

NOTE: This puts the “pointer” into the right hand “window"’. Try
“scroll” some more using arrow keys.

129) Press F11 key and the right arrow.

NOTE: We now have February and March in view in the left “‘win-

18

REMark + October » 1984

dow’” and 4th Quarter and Year Totals columns in the right “‘win-
dow’’ so we can see/watch these columns on the same screen. Lets
do a “WHAT IF"* and watch the re-calculation in both “windows’'!
130) Press F6 key.

131) Press F5, type D7 and press Return.
132) Type 24678 and press Return.

NOTE: Did you see the recalculation? We will try another. BE SURE
you watch carefully! This is one of the “BIG" features of a Spread-
sheet “model”!

133) Type 14678 and press Return.

NOTE: Did you see it happen that time? What if we wanted to
prevent changes to our original P—LTEMP1 data and allow changes
only in our projection/forecast data? We would use the 1-2-3 *Pro-
tect” feature!

134) Press /WW and type C.

NOTE: The C “/cleared” or eliminated the “‘windows". By-the-way
have you SAVED lately? Enough said!

135) Press /WG and type P and press Return.
NOTE: This command “ENABLES’’ Protections (turns it ON)!
136) Press /R and P, type B7..D13.

NOTE: We used “range protection’ to protect the original data. Did
you recognize the “block range” that we specified? We used the
corner cells!

137) Press F5, type E7 and press Return.
138) Type 22456 and press Return.

NOTE: We have several messages! ERROR in the upper, right corner
of the screen and “'Protected Cell” in the lower, right corner of the
screen, PLUS a “BEEP” from the computer. Thus, we have prevented
a change to a cell that contained original data. We will find this very
valuable in some of our future assignments! Use “HELP"" key and
your manual to study this feature. We also have another valuable
command -- Status Check!

139) Press ESC key.
140) Press /WS

NOTE: We have a Status Report in the upper work area. Check
carefully what information appears in this report so that you will

know when to use Status Report. In this case we want to see
Protect--ON!

141) Press ESC key.

142) Press /WGP and type D.

143) Press F5, type D7 and press Return.
144) Type 22456 and press Return.

NOTE: Now we can change this cell because we turned Protection
OFF!

145) Press /WS,

NOTE: The Status Report shows Protect--OFF!
146) Press ESC key.

147) Type 12456 and press Return.

NOTE: We have completed our second assignment--P— LTEMP2
(for 1-2- 3). SAVE and QUIT! You know how!

We have covered a lot of new 1-2-3 Spreadsheet features with this
assignment. | would like you to make a ““list” of them. If you did not
use the 1-2-3 “HELP” screens as we used the new items, repeat the
procedure and study these “HELP'* screens. Also, please look each
of the items up in your 1-2-3 Manual and study each!

CLOSING

For “homework” | would like to have every 1-2-3 user repeat the
above step-by-step procedure until you can do the assignment with-
out the help of this article using only the “HELP” key and your
“Spreadsheet Preparation Forms”. When you can do that, you will
be ready for the next assignment!

I hope that you Readers using Multiplan or PeachCalc/SuperCalc
have referred to their Manuals to see how each of the ““new’’ spread-
sheet features can be done with their software. If you made the ““list”
that | suggested above, this will help you to find similar items for your
software. Next month | will give you some “hints" of how | did this
assignment using Multiplan and PeachCalc. Then you can compare
how you did it with my method. BE SURE to try the assignment before
next month!

| would like to restate -- “SPREADSHEET Corner” is your space in
REMark! If you have any questions, suggestions, constructive criti-
cism, other ways of doing things, etc.; please write them out in detail
and send them to the author along with a SASE, business size.
PLEASE, NO PHONE CALLS! The author will send you an answer or
put the information into a future ““SPREADSHEET Corner”.

%

DATA SYSTEMS CONSULTANT
P.O. Box 535
St. James City, FL 33956

NEW - PERSONAL DATR MANAGEMENT SERIES
w.including ...

® Appointment Calendar @ Vehicle Log
® Mailing List @ Recipe List
® Household Inventory @ Coupon Organizer
® Periodical Index @ Library Index
® Record Index ® Video Tape Index
® Rudio Tape Index ® Check Register

A1l on ONE disc for ONE price. . . ¢ 59 8s

ID@QDlIER Braphics Package $79.95

ZI10OO SOFTW-AKE

Prepaid orders sent post-paid. Florida residents
please include S percent sales tax.

Send SASE for additional Info on Programs.
He are an authorized ZENITH Data Systems Dealer
This entire ad was printed actual size using
DOODLER , a Z-180, and a GEMINI-18x printer.

Dealer Inquiries contact - YELLOW ROSE SOFTHARRE
10208 N. 30th Street, Tampa, FL 33612

REMark + October « 1984

19

NITH

AROUND THE

PRINTERS PRINT CIRCLES

Actual Speed Test Results

dat¢
syste

COMPETITION

STRAIGHT | INVOICE | BUFFERED | RATED
PRINTER MODEL |'ppiNTING | PRINTING | PRINTING | SPEED
Zenith Z-125 89 cps 140 cps 82 cps 150 cps
TI-810 123 cps 153 cps 80 cps 150 cps
Data South 180 80cps | 130cps 77 cps | 180 cps
Epson FX-80 82 cps 80 cps 55cps | 160 cps
Star Gemini 63 cps 77 cps 76 cps 100 cps
Okidata 84 126 cps | 204 cps 100 cps | 200 cps
Zenith 99 55 cps 58 cps 58 cps 100 cps
Zenith 150 113 ¢cps | 166 cps 142 cps 150 cps
“S" printer 106 cps 113 cps 111 cps | 160 cps

All 150 character per second printers
are not created equal. When you actually
start running, you'll find that the speed at
which the characters appear on the paper de-
pends on many things beside the published
rated speed.

When actually tested, the nine printers
listed gave some surprising results. See how
they measured up in the different functions.
“Straight Printing” is printing one full line of
data after another. “Invoice Printing” is a test
set up with a simulated invoice. “Buffered
Printing” used the same data as the invoice
test but with some disk accessing in between
each invoice. “Rated Speed” is what everyone

Model shown with
optional SoftSwitch Keypad

promises in product
advertising. In actual
printing variables like forms
advance rate, degree of logic seeking and buffer
presence mean a lot.

Prove it to yourself. Visit your local Heathkit
Electronics Center* or Zenith Data Systems
dealer and ask for a copy of “Q & A for the
Printer Peddler.” It explains why one 150 cps
printer can be twice as fast as another. You
might also get a copy of the Speed Testing
program that was used in this testing. So you
can prove these figures for yourself. For the
name and address of your local Zenith Data
Systems dealer call 800-842-9000, ext. 1.

*Units of Veritechnology Electronics Corporation.

The FORTRAN Formula-1

by Dick Stanley
P. O. Box 9512
Alexandria, VA 22304

Wouldn't it be nice if you had a programming language that was
similar to the BASIC you already know, but which generated fast-
executing true machine code? While we are at it, how about the
ability to mix program segments written in different languages? That
way, you could use that neat assembly-language screen handler and
the Pascal graph program you acquired in your latest effort to beat
the stock market. It would help if it were low-cost, too!

Well, read on. The language is FORTRAN, and it is here; it has been
for 30 years. Beginning this month, and continuing in REMark every
other month, we will explore how FORTRAN can simplify and speed
up the programs we write. Even if you have never used the language,
stick around. You may find you want to use it. And if you are a
FORTRAN veteran, you may want to read through this too; hopeful-
ly, there will be something for everyone.

A Little History

FORTRAN is an acronym derived from the term FORmula TRANSsla-
tion. It is an algebra-like language that was first developed in the
mid-1950's for use primarily by scientists and engineers who were
then beginning to use computers to solve complex technical prob-
lems. Because of that, the language was structured to look as much
like the mathematical notation those people used daily with their
slide rules as was possible. At about the same time, COBOL was
developing for use within the business community. Both languages
were developed to make their use relatively easy for their intended
audience: COBOL is English-like, FORTRAN looks just like written
algebraic equations.

At this point in computer development, there were two sorts of
computers: scientific and business. Business applications, such as
payroll preparation, were seen as requiring considerable amounts of
input/output (1/0), but not large amounts of computational capabil-
ity or memory. Scientific applications were characterized by mini-
mal 1/0, but large demands for computing power and memory.
Computer runs of several days duration to solve complex mathemat-
ical problems were not uncommon. And, of course, everything was
batch processed -- interactive computing was still a generation
away.

Because this type of hardware was the only sort available, the
languages were developed to take advantage of its capabilities. They
also reflect the hardware limitations. For these reasons, both COBOL
and FORTRAN have been roundly condemned by more modern
data-processors as being prehistoric and useless. That is a bit of an
overstatement. Both languages have limitations, as do all their more
modern relatives. But both have some significant advantages, as
well. In large part because the language was required to compensate
for some hardware characteristics that would today be regarded as
fatal. H. W. Bauman has introduced you in these pages to the
abilities of COBOL; my plan is to guide you through FORTRAN,
Once you have tried it, you won't go back!

Why FORTRAN?
A good question. There are several answers.

First, because it has been around for so long, there is an enormous
amount of program code written in FORTRAN. If you work in sci-
ence or engineering, you will almost certainly have to work with
programs written in FORTRAN. Even if you are an accountant or a
bus driver, though, much of this code is now in the public domain,
and available to you for the cost of copying. In either case, a know-
ledge of the language is essential for you to modify it to do what you
want, and not spend all your time rewriting the problem solution in
some other language.

Second, and also due to its long history, FORTRAN has been
thoroughly tested and is virtually bug-free. Or, to put it another way,
all the undocumented features are now documented!

Third, there are agreed-upon standards for FORTRAN. Thus, if you
write your program in FORTRAN on your machine, you can trans-
port the source code to another machine of totally different architec-
ture, recompile, and run the program. Of course, it is upward-
compatible: older versions work on newer versions of the compilers,
but not the other way around. This portability of code can be a great
asset in program development among several people or locations,
especially if they do not all have the same machine. It is also a big
help when you change your computer. All you need to get your old,
tested programs running on the new machine is a new FORTRAN
compiler and the time to recompile the old source code.

Last, FORTRAN gives you a lot of benefits you can’t get anywhere
else. It is easy to learn, because you have a good idea already about
the language structure -- it was the model for BASIC, which is the
veritable ““standard’* on microcomputers. FORTRAN is more power-
ful than BASIC, and gives you speed and capabilities simply impos-
sible to achieve in BASIC.

Benefits

FORTRAN is a compiled language. That means that the output of the
process is a machine-language file -- a .COM file -- that is ready to
run on your computer. You do not need to have any of the compiler
resident in memory, or even on disk, when the program runs, as you
do in BASIC. So, more memory is available for the program. Prepar-
ing a program is slightly more complex than in an interpreted lan-
guage like BASIC, because you must first compile the source code
(Oops! Source code is what you write in the high-level language, like
FORTRAN.) Object, or machine, code is what comes out the “‘back
end” of the compiler. It is the translation of your instructions into
language the microprocessor can understand. Compilation involves
passing your source code through a compiler, just as you would pass
atextfile through a formatter. The code will not execute immediate-
ly, as does BASIC; it must first be compiled. This extra step adds a bit
of time to program preparation, but more than pays for itself in time

REMark * October = 1984

21

saved during program execution.

Not all the speed of FORTRAN comes from compilation alone. It is
easy to produce slow machine code -- lots of compilers do it every
day. But FORTRAN has also been around long enough to have been
largely optimized. In other words, it generates efficient code, not
merely object code. If you are going to do the same calculation
several thousand times, and computer time costs $100 per CPU
minute, efficiency is important. Those were just the conditions that
prevailed in the 1950's and 1960’s, and FORTRAN evolved to
minimize the cost of such calculations.

You don’t repeat calculations thousands of times, though, do you?
Oh? Consider the relatively simple case of calculating and printing
an amortization schedule for the 30-year mortgage on your home.
You will go through the calculating loop 360 times (30 yearstimes 12
months per year), and each calculation will require the calculation of
several quantities raised to a power. The computer does that by
calculating the value of a mathematical series -- adding up a large
number of terms to approximate the value of X**N. Each payment
calculation requires dozens of the same computations done repeti-
tively, and each set done 360 times! Even this common application
requires several thousand repetitive calculations. More complex
applications require even more.

Itis precisely at this point that BASIC starts slowing down. Because it
is interpreted, each statement must be translated into machine code
each time it is accessed. That takes time. The more calculations, the
more time is required.

There is such a thing as a BASIC compiler, though. Changing from
interpreted to compiled BASIC will greatly speed up program execu-
tion. However, it still will not be as fast as a FORTRAN program,
because compiled BASIC has more overhead (code that must be
compiled, but is not used in the program) than does compiled
FORTRAN. More about this later. More significantly, itis still BASIC.
The powerful and flexible features of FORTRAN simply are not
available in BASIC, compiled or interpreted.

A word of caution at this point. Merely compiling source code is not
the only thing involved in gaining speed. Like anythingelse, there are
good compilers and there are not-so-good compilers. Slow, ineffi-
cient FORTRAN compilers can be built: the IBM PC FORTRAN has
achieved a reputation for being unusably slow, to name one. We will
use tested, reliable, fast compilers in this series. Why use anything
else?

To get an idea of the types of speed improvements we can achieve,
consider the results of some benchmarks which have been runin a
variety of languages on Heath/Zenith computers. Benchmarks can
fool you in some circumstances, but they can also be helpful for gross
comparisons. Take a look at the data in Figure 1.

The FORTRAN compiler is written so that only those routines that
actually are used by the program you write are included in the source
code. If your program does not calculate the square root of anything,
the code for calculating the square root will not be included in your
object code. This substantially reduces program overhead, and con-
tributes to speed in the compiled code. It means that the FORTRAN
compiler must have a library of routines to refer to, so that it can
select the ones it needs, and this library is usually included with the
compiler. Because of the separation of the library and the compiler, it
is possible to tailor particular routines to your own needs, and even
to write library routines which do things you require that were not
included with the compiler. The need for this library may appear on
the surface to be an impediment, but it actually provides a surprising
amount of flexibility to the FORTRAN programmer. Later in this

series, we will examine some public domain library routines which
increase program execution speed even beyond that shown by the
benchmarks below.

Machine Operating Language Run Time PerCentSlower

System (seconds) than Microsoft
FORTRAN
789 CP/M ECMBASIC 3056 11,281%
Z89 CP/M JRT Pascal 807 2,952%
789 CP/M Compiled MBASIC 37 37%
289 CP/M Microsoft FORTRAN 27 -
<2100 Z-DOS Z-BASIC 2057 14,593%
2100 Z-DOS IBM FORTRAN 618 4,314%
Z100 CP/M-85 MBASIC 1710 12,114%
Z100 CP/M-85 JRT Pascal 409 2,821%
Z100 CP/M-85 Compiled MBASIC 18 29%
Z100 CP/M-85 Microsoft FORTRAN 14 -

Figure 1. Benchmark results of various languages using the “Sieve of Eratos-
thenes” as presented in BYTE, January, 1983. Data originally printed in BUSS
#69, May 26, 1983.

We have already mentioned the portability of FORTRAN source
code as a result of national standards. Not only can you easily move
your own code to another machine (as when you upgrade your
computer), you can also import other people’s code (remember all
that public domain FORTRAN code?) to your machine and compile
and run it with minimal trouble! There is a large number of excellent
solutions to common scientific and engineering problems in the
public domain, and that fact alone can save you hundreds of hours of
coding, debugging, and testing. If someone else has previously prog-
rammed the solution to your problem, why should you do it again?

The current “‘buzz-word”’ in modern data processing is “software
engineering.”’ A major feature of software engineering is the ability to
reuse code that was originally written in another language than the
one you are working in now, so that routines need not be rewritten
merely to translate them when the programming language changes.
Not a bad idea. FORTRAN has that capability!

True, BASIC lets you access assembly-language routines from within
the BASIC program, but it is awkward, and requires not a little
knowledge of specifics of the machine to do it. FORTRAN, on the
otherhand, lets you link in program segments written in virtually any
other language when you compile the program. There are some
rules, of course, to ensure that data and parameters are correctly
passed between segments, but the essential fact is that you really
CAN use your Pascal graph generator and your assembly-language
keyboard handler with your FORTRAN program. That can be a big
savings in coding time, but the real savings is in the commaon inter-
faces you work with: data can always be input from essentially the
same routine, with the same command structure; graphs can
routinely be prepared using the same commands and parameter
routines; etc. Each time you don't have to learn a new technique or
syntax, the time it takes to implement it goes down and your accu-
racy goes up.

FORTRAN source code is written with a text editor: any one you like.
| happen to prefer the non-document mode of WordStar, others
swear by PIE, VEDIT, or their particular favorite. The point is, the
program doesn’t care. Once you have learned the editing commands
peculiar to your favorite editor, you needn’t learn another set to edit
program code. You can use the block move commands to your
heart’s content, and any other features you may care for. If you
choose, you can even build a file of proper commands and run them
in your spelling checker to get a first cut at possible syntax errors. |
don’t know about you, but | can never remember the BASIC line

22

REMark * October * 1984

editing commands for longer than ten minutes. As a result, | often
re-type a line that | just edited and then inadvertently erased. And, oh
yes, FORTRAN doesn’t require sequential line numbers! It uses line
numbers for branching references, but &nly the branches need to be
numbered, and those don’t need to be sequential. Line 10 can occur
after Line 4356, and nothing untoward will happen. Try inserting 50
new lines in your BASIC program sometime when you discover a
new way to make it work faster or better!

Drawbacks:

By now your suspicions should be aroused. Isn't there anything
about this language that isn’t so great? Well, as a matter of fact, there
are some things. They aren’t devastating, but they do require some
thought as you create programs. (By now, you should have deter-
mined that I think FORTRAN is a pretty good language, so you can be
sure we will also talk in this column about ways to overcome the
drawbacks).

FORTRAN came of age when computers were fed data on punched
cards. You have all seen these in one disguise or another -- they are
the stiff rectangular cards with 80 columns from left to right, and 12
rows which can have little rectangular holes punched in them. Each
pattern of holes in a column distinctly identifies a letter, number, or
special character. They seem antique today, but punched cards were
a major improvement over punched paper tape, both in terms of
speed and the fact that tape is purely sequential -- you cannot easily
insert something in the data already punched in the tape. You can,
however, easily insert several new data cards between the old ones.

Enough history. Because of this method of input, FORTRAN de-
velopers designed a format that was easy to put in a punched card,
and which provided for some basic checks that the computer could
make on the input cycle. In today’s world of interactive computers,
these format requirements can make for awkward 1 /O without a little
forethought. It is largely because of the apparent difficulty of FOR-
TRAN 1/0 that most of the microcomputer users | have talked to
have avoided the language.

1/O with FORTRAN does require some more planning than it does
with BASIC, but not much. Once you get the hang of it, it isn’t any
more of a problem than laying out a page using BASIC. Most of the
literature out there on FORTRAN still presents |/O as if you were
using punched cards. We aren’t! A major aim of this column is to
present some straightforward subroutines and methods for achieving
input and output relatively effortlessly in FORTRAN.,

For the same reasons, program statements have a format which
appears rather odd at first glance. As an example, each statement
must begin in column 7 and not extend beyond column 72 (yes, they
can be continued on another line). Not to worry; these syntactical
peculiarities will soon seem much less troublesome than the need for
a statement number at the beginning of every BASIC program line.

Because of its line formatting requirements, structured programming
in FORTRAN requires a little more thought than it does in Pascal. On
the other hand, structured programming in BASIC is virtually impos-
sible, so this is not a serious drawback.

There are those who would have you believe that FORTRAN cannot
handle strings. Not so. No language is great at everything, though,
and even die-hard supporters have to acknowledge that FORTRAN
would probably not be their first choice for ease of string handling.
But it would be for speed! This is another that has been glossed over
in the microcomputer literature, and which we will talk about in
detail in this column.

To summarize, FORTRAN is an excellent language choice for pro-

ducing fast, efficient programs. Several powerful programming fea-
tures, such as linking of external subprograms, are available. The
cost of all this is some attention to formatting details for 1/O and
program statements. For any application that does significant
amounts of calculation or data manipulation, FORTRAN is likely to
be a good choice as the programming language.

What's Available?

There are three FORTRAN compilers readily available for Heath-
/Zenith computers: Microsoft FORTRAN, Nevada FORTRAN, and
Supersoft FORTRAN. Let’s examine each one separately.

Microsoft FORTRAN is the ““old reliable’ for the Heath/Zenith line,
as well as for most other micro’s. IBM FORTRAN appears to be an
anomaly; the 8-bit Microsoft FORTRAN compilers have de-
monstrated an excellent capability to generate efficient, fast-running
machine code. Microsoft 8-bit FORTRAN is available for the Heath-
/Zenith line from Heath (P/N H-8-20, $175 for HDOS; P/N HMS-
817-2, $195 for CP/M hard-sector format; P/N HMS-837-2, $195
for CP/M soft-sector format), and from a variety of independent
suppliers. A quick check of some recent ads indicates prices ranging
from $239 to $329. However, the Heath version of FORTRAN,
especially in hard-sector, can often be found at substantial discounts,
I was able to obtain a copy for under $100 from a supplier who was
lowering his inventory. This is an example of how the relative
unpopularity of FORTRAN on micro’s can work to your advantage. If
you use only HDQOS, this is your only choice for a FORTRAN
compiler.

Microsoft FORTRAN supports the ANSI-66 standards, except for the
COMPLEX data type (more about this in a later column). It has some
language extensions. It requires 48K RAM and two disk drives.

If you want the 16-bit version of FORTRAN for your H/Z-100, it is
P/N MS-463-2, $195 from Heath. It requires one disk drive (two are
recommended), 192K RAM, and MS-DOS or Z-DOS. A word of
caution: thisis a clone of the IBM FORTRAN that has been described
by many users as extremely slow in execution, This compiler sup-
ports most of the ANSI-77 FORTRAN standards, which include the
ANSI-66 standards as a major subset. It does not support the COM-
PLEX data type.

There is a bit more to Microsoft FORTRAN than meets the eye. First,
of course, you get the FORTRAN compiler, which is called
F80.COM. You also get the library of functions and routines, FOR-
LIB.COM, and a library manager utility. And you get Microsoft’s
MACRO-80 assembler, M80.COM, and the associated linker,
L80.COM. The linker is necessary for the compilation process, but
both linker and assembler are also useful for assembly language
work that has nothing to do with FORTRAN, so you are, in effect,
getting a “‘bonus.”

The cheapest way to get into the FORTRAN business is with Nevada
FORTRAN (available from Ellis Computing, 3917 Noriega Street,
San Francisco, CA 94122, (415) 753-0186, for $39.95 in Heath hard
or soft sector format). Nevada FORTRAN is a pseudo-compiled
language, however; the compiler generates an intermediate code
which is then interpreted at run-time. This is the same difference that
exists between CBASIC and MBASIC. This process is inherently
slower than running equivalently efficient native code, but it does
offer the opportunity to get into FORTRAN programming at a very
low cost.

Nevada FORTRAN also supports the ANSI-66 FORTRAN standards
except for COMPLEX types, and has some extensions. It includes an
8080 assembler in the package, together with the pseudo-compiler

REMark * October + 1984

23

and the run-time support package. Some of the language extensions
include IF-THEN-ELSE constructs and a TRACE-style debugger. If
you use such extensions in any FORTRAN product, however, your
code will not be especially portable. That may not matter to you,
though, so look closely at your requirements before placing exces-
sive weight on that factor.

If you can’t get a ““buy’’ on Microsoft FORTRAN, or if you aren’t sure
you want to pursue FORTRAN in the long term, then Nevada FOR-
TRAN may be just the thing. The system requirements are as for
Microsoft FORTRAN.

The only other compiler of which | am aware is the SuperSoft
FORTRAN compiler (available from SuperSoft, P. O. Box 1628,
Champaign, IL 61820, (217) 359-2112, $425 in either 8- or 16-bit
versions). This compiler is advertised as meeting the ANSI-66 stan-
dards, and also as having several important extensions. Notable
amongst the claims for this compiler is the availability of 8087
support (for a $50 added fee) and free-form string input and output.
SuperSoft FORTRAN is available for CP/M-80, CP/M-86, or MS-
DOS. It requires 32K memory with CP/M-80 and 128K with the
other operating systems.

The SuperSoft FORTRAN comepiler is the only one to provide the
COMPLEX data type. It also claims a wide variety of special func-
tions, and claims that it is over ten times faster than IBM FORTRAN.
That still represents a speed 3-4 times slower than 8-bit Microsoft
FORTRAN, however.

Because of its wide availability and long history, we will use Mic-
rosoft FORTRAN for program development in this column. If there is
sufficient reader interest, Nevada or Supersoft FORTRAN may be
included at a later date. However, remember that FORTRAN source
code is portable. Only when we write code to utilize a language
extension found in one manufacturer’s product, but not in another’s,
will we likely run into any trouble when we switch machines or
compilers.

What Will We Do With FORTRAN?

| prefer articles that help me create something useful while I'm
learning a new language or facility. After all, how many more sort
routines or erase utilities does my system really need?

FORTRAN was built for calculation, so we are going to develop a
system that takes advantage of its abilities in that area -- a technical
analysis program for use with stock market data. We will construct
our system in modularfashion. Particular attention will be paid to the
fine points of 1 /O, screen and printer control, and data handling. Our
goal is a system that will be useful, accurate, easy to use, and fast.

Stock market analysis involves many calculations, and round-off
errors can literally cost you money, so we will deal carefully with
how to ensure that what we do is not only fast, but also accurate.
We'll implement some statistical routines as well, and in the process
we will cover loops, array handling, file structure and management,
and special features and “tricks of the trade.”

Few things are more frustrating than articles which give you program
listings that “ought to work,”” or which omit half the detail you need
to make it work properly. We won't do that here. Everything you see
will be an exact copy of what was done on my development system.
If it didn’t work, you won’t read about it (except perhaps to illustrate
how not to do something). We will follow a step-by-step approach to
programming, compiling, and linking, so that these critical steps
become second nature to you. In short, the purpose of this column is
to make you comfortable with a powerful tool to solve problems that
involve large amounts of calculation: FORTRAN.

The system used to develop the programs in this column is an H-89A
with one 48 tpi single-sided drive and two 96 tpi double- sided drives
running Heath /Zenith CP/M 2.2.03. The system has 64K RAM and
is running Microsoft FORTRAN Version 3.4. If we get to the point that
more than 48K RAM and two drives is required, it will be plainly
identified.

To provide a common ground, we will use Microsoft BASIC as a
point of departure to teach FORTRAN commands and syntax. There
are two reasons for this: BASIC has become the “first language” for
most microcomputer owners; and BASIC was developed from the
FORTRAN language, so their similarities can aid understanding.

Next column it will be time to roll up your sleeves. We are going to
begin our programming tutorial with an introduction to the format of
FORTRAN commands, an orientation to several commands we will
need for inputting information to the computer, and we’ll actually
write and compile a program to get data into the machine interac-
tively. If you already have a FORTRAN compiler, brush up with your
reference manual; if not, why not get one and join us?

About the Author:

Dick Stanley is a lieutenant colonel in the Army Signal Corps,
and is currently the deputy director of the Ada Joint Program
Office. He wrote his first FORTRAN program foran IBM 1620 in
1962, and has been “hooked"’ ever since. He has been working
in communications and computer engineering since receiving
his MS degree from Lehigh University over 20 years ago. In his
spare time, he serves as vice-president of Wheeler Associates,
Ltd., a consulting and publishing firm in Alexandria, Vrrgtma,
which specializes in education and computers.

ASSEMBLER CAN BE FUN

Announcing the OMNICODER™ Assembler

The Omnicoder™ Assembler and Linkage Editor are designed to
be used by real people with real problems. The user interface is
designed to keep you in control at all times. It even has an on-
screen help facility. It has many sophisticated features that you
would expect to find only on larger computers: program segmen-
tation, automatic search of up to 16 drives, a true macro language
with both positional and keyword parameters, global variables,
unlimited nesting, and time stamping options. The linkage editor
produces a linkage map to help in debugging your programs.
There are many more features. too numerous to list here.

System Requirements
Z80%, 64K. CP/M?®, One or two disk drives. Disk formats avail-
able: H17 (hard sector), H37 (soft sector). and H47/H67 (8-inch).

Future Plans
We plan to add multiple cpu and mnemonic capabilities. We plan
to release a source code management system in early 1985, and
our PANDORA™ operating system in late 1985.

Ordering Information
PRICE: $90 per site (USA only, no foreign orders). Ohio resi-
dents add 5.5% sales tax. MC/Visa welcome. Return undamaged
within ten days for refund.
Send your order to:

MOCKINGBIRD DATA SYSTEMS
2296 Hoover Rd
Grove City, Ohio 43123

Trademarks: Zilog: ZB0" Digital Research: CP/M* Heaih Company: HDOS™
Mackingbird Data Systems: OMNICODER™, PANDDRA™

24

REMark + October « 1984

Introduction to
Data Structures

Part 3 - Hash Tables =

Computers are often used to store and retrieve information. In my
first two articles on data structures, | described two techniques,
linked lists and binary search trees, for storing information (see
REMark 5(2) and 5(4)). With these methods, individual pieces of
information can be retrieved as needed; also, it is easy to retrieve the
stored data in sorted order. However, when searching for individual
items in these structures, several memory locations may be probed
before the correct item is found. Hash tables, also known as scatter
tables or scatter stores, are another form of data structure used for
storing and retrieving information. The term “*hash’’0, which can be
used as an adjective or a verb, is of uncertain origin. It may have
come into use because the data stored in a hash table seemed to be as
mixed up as the meat and potatoes in hash. According to Knuth(5),
the term was common jargon for several years before its first use in a
scholarly journal in 1968.

The main advantage of hash tables is that usually only one or two
memory locations are probed before finding the correct item (when
retrieving data) or a place to insert the item (when storing data). One
disadvantage is that the contents of an entire hash table cannot be
retrieved in sorted order without first sorting the entire table.

A hash table is simply a sequential area of memory that has been
divided into M “‘buckets”. The buckets are numbered from 0 to M,
and the number of the bucket is called its “address””. Each bucket
holds one or more “records”. A record is a set of data to be stored
together, e.g. name, address, and telephone number, Each record
fills one “slot” in a bucket, and usually there is only one slot in a
bucket. In this article, it is assumed that there is one slot per bucket,
and the terms “‘slot” and “bucket’” will be used interchangeably.
Each record is associated with a “’key”’, and no two records in the
table have the same key. The key is used to find the location of the
record in the table. A “*hash function”, H, is used to transform the key
into an address in the table, a process known as “hashing’ or
"’key-to-address transformation”’. H(K) is the ariginal hash address of
the record with the key K. There are many possible hashing func-
tions, but if K is an integer (or if the key can be converted to an
integer), a reasonably good, but simple, hash function is H(K) = K
mod M, i.e. the remainder when K is divided by M. If this method is
used, M should be a prime number.

Usually there are many more possible values for K than there are
buckets in the table, but N, the number of keys actually entered in the
table, is less than M. The term “load factor” is usually defined as
N/M, and is a measure of the fullness of the table; the load factoris 1
when the table is full.

Emily A. Yount
Rt 1, Box 408
Danville, IN 46122

Since there are more possible values for K than there are for H(K), itis
likely that two or more different keys will have the same value of
H(K), and so map to the same address. When a new key hashes to a
bucket that already contains a record, a ““collision” has occurred;
the new key is called a ““collider”. There are many techniques
available for handling collisions, but some are better than others. The
advantages of the better methods are most apparent in comparison to
the poorer techniques. Since it is instructive to study the bad as well
as the good, several techniques will be described in this article.

The “open addressing’”’ techniques are methods for resolving colli-
sions by inserting colliders at some pointin a reproducible sequence
of addresses. Every key K can be used to generate a “‘probe sequ-
ence”, a sequence of addresses that are checked whenever the key K
is inserted or retrieved. The search continues until K is found or an

SLOT K KEY ORG ADDR
0 345 H89 0
1 530 ZENITH 1
2 463 COBOL 3
3 440 LISP 3
B 0 0
5 0 0
6 0 0
7 514 MARKER 8
8 514 REMARK 8
9 0 0
10 0 0
11 0 0
12 0 0
13 450 BASIC 13
14 291 C 15
15 572 FORTRAN 20
16 430 HERO 16
17 500 PASCAL 17
18 363 Z100 18
19 388 HUG 20
20 320 H8 21
21 458 HEATH 21
22 483 FORTH 0

Figure 1. Example of hashing with linear probing. In all figures, the keys were
entered in the following sequence: REMARK, MARKER, HEATH, ZENITH,
H8, H89, Z100, HERO, HUG, PASCAL, FORTRAN, BASIC, C, FORTH, LISP,
COBOL.

REMark * October * 1984

25

empty slotisfound. Finding an empty slot indicates thatK is not in the
table. The table is considered full when all slots, but one, are ac-
cupied.

In the simplest form of open addressing, a method called “linear
probing”, the collider is put in the next empty slot in the table. If the
end of the table is reached, the search for an empty slot moves to the
beginning of the table (i.e., if the initial hash address is H(K), the
probe sequence is (H(K) - 1) mod M, (H(K) - 2) mod M, ..., (H(K) + M -
1) mod M). The results are essentially the same if the sequence is
(H(K) + 1) mod M, (H(K) + 2) mod M ... Probes are made sequentially
through the table until an empty slot is found (an unsuccessful
search), or the key is found in the table (a successful search). An
example of this technique is shown in Figure 1 and Listing 1. The
Listings show examples of BASIC and PASCAL subprograms used to
produce such tables. In all examples, the table contains 23 slots. The
keys used in these examples are terms that should be familiar to
people who read REMark. The same sequence of keys was used for
each figure, the differences in table arrangement resulted from the
use of different algorithms. The keys are assumed to be strings of
characters; only the first 8 characters are significant. Initially, all
integer fields in the table contain zero, and any character fields are
set to contain only blanks.

Deletions are a little more complex than insertions. Since an entry to
be deleted may be one in a series of entries with the same original
hash address, it is important to check for the existence of further
entries in such a series. If such entries exist, they must be moved so
that future find operations will be able to locate these items. For
instance, if the record for “HEATH" is deleted from the table in
Figure 1, the records for “C”*, “FORTRAN", "HUG"’, and “"H8"’ must
be moved. The result of such a deletion is shown in Figure 2.

SLOT K KEY ORG ADDR
0 345 H89 0
1 530 ZENITH 1
2 463 COBOL 3
3 440 LISP 3
4 0 0
5 0 0
6 0 0
7 514 MARKER 8
8 514 REMARK 8
9 0 0
10 0 0
11 0 0
12 0 0
13 450 BASIC 13
14 0 1h
15 291 G 20
16 430 HERO 16
17 500 PASCAL 17
18 363 Z100 18
19 572 FORTRAN 20
20 388 HUG 21
21 320 H8 21
22 483 FORTH 0

Figure 2. Contents of table shown in Figure 1 after deletion of “HEATH".

Linear probing is simple to program, but unfortunately it is one of the
worst collision resolution techniques in terms of average number of
probes needed per search. Entries have a tendency to form
“clusters”; i.e. several entries will be grouped together in the table,

In order to find an empty slot for an entry that hashes into such a
cluster, it may be necessary to probe several slots. The next available
empty slot is the same for all entries that hash into such a cluster. As
the table fills, it becomes probable that if a slot is full, the next slot in
the sequence would also be full. This phenomenon is known as
“primary clustering’’. In primary clustering, if two keys collide at any
point in their probe sequence, they will also share the remaining
probe sequence. Two different keys may share part of a probe
sequence, even if they originally hash to different slots. The result is
long sequences of occupied slots in the table. The quality of a
hashing algorithm is usually described in terms of the average
number of probes per search. The average number of probes per
search is usually quite low; but in the worst case, e.g. when all keys
have hashed to the same address, the number of probes per search
may be very large. The mean number of probes per unsuccessful
search remains low (less than 2.0) until the table is over 40% full
(load factor 0.4), but beyond that point, the mean search time for
unsuccessful searches increases rapidly as a function of load factor
(5,10). For successful searches, the mean number of probes per
search is less than 2.0 until the table is over 60% full. Again, beyond
that point search times increase rapidly.

The ‘‘quadratic search” technique was proposed as a way of
eliminating primary clustering(8). In this method the probe sequence
is the sequence generated by computing H(K) + A*| + B*1*I for | =
0,1,2,3,.... and A and B are integer constants. One problem with this
method is that when table size is prime, only half the table is
searched before the search procedure returns to the original hash
address. This problem can be eliminated by the use of slightly more
complex probe sequences (3,9). However another problem still
takes place, “‘secondary clustering’” is said to occur when two diffe-
rent keys (K and K’), with the same original hash address ((H(K) =
H(K")), have the same probe sequence.

The quadratic search techniques were quickly superceded by the
idea of “double hashing". The basic idea of double hashing is that a
one hash function (H1(K)) is used to determine the original hash
address, and a second hash function (H2(K)) is used to determine the
probe sequence. Even if two different keys share the same original
hash address, with this method it is very unlikely that they will share
the same probe sequence. The second hash function, H2(K), must
produce a value that is “relatively prime” to M, (i.e. H2(K) and M
have no common divisors greater than one). Also, the values of H2(K)
must fall between 1 and M-1. For instance, if M is prime and H1(K) =
K mod M, then H2(K) could be (K mod (M-2)) + 1. In this case, itis
good if M and M-2 are both primes, but M-2 need not be prime.
Another possibility is H2(K) = ((K div M) mod (M - 2)) + 1. Examples
of subroutines used for double hashing are shown in Figure 2 and
Listing 2. In this example M (23) is prime, and M-2 (21) is not prime,
but the values of H2(K) will range from 1 to 21, numbers that are
relatively prime to 23.

When double hashing is used, deletions are usually handled by using
a special field in the record to mark the record as being ““deleted”
rather than being “empty’ or “full’’. Then when searching for a key,
the search sequence must continue until an “‘empty’’ slot is found,
but if it is known that a key is not in the table, the entry for that key
could be made in the first slot marked as “‘deleted”. It the table is too
full of “deleted”’ entries, it may be necessary to “‘rehash” the table, a
procedure described in reference 8.

There are several variations on double hashing that give improved
search times in one way or another. For instance, Brent's algorithm
(2, 5) decreases the time needed for successful searches at the
expense of longer insertion times. Also, the “ordered hashing”
method of Amble and Knuth (1, 6, 9) decreases the amount of time

26

REMark * October *+ 1984

needed to do unsuccessful searches, again at the cost of longer
insertion times. An interesting feature of ordered hashingis that there
is only one possible final table arrangement for a particular set of
keys. The arrangement does not depend on the order in which the
keys are entered, but is the same as if the keys had been ordered prior
to insertion.

Double hashing gives better search times than linear probing. The
mean number of probes per unsuccessful search does not go above
2.0 until the table is 50% full, and the mean number of probes per
successful search is below 2.0 until the table is 80% full. However,

S5LOT K KEY ORG ADDR
0 345 H89 0
1 530 ZENITH 1
2 0 3
3 440 LISP 3
Bl 0 0
5 0 0
6 0 0
7 0 8
8 514 REMARK 8
9 388 HUG 0
10 0 0
11 0 0
12 463 COBOL 0
13 450 BASIC 13
14 572 FORTRAN 15
15 320 H8 20
16 430 HERO 16
17 500 PASCAL 17
18 363 Z100 18
19 291 C 20
20 514 MARKER 21
21 458 HEATH 21
22 483 FORTH 0

Figure 3. Example of double hashing. In all figures, the keys were entered in
the following sequence: REMARK, MARKER, HEATH, ZENITH, H8, H89,
Z100, HERO, HUG, PASCAL, FORTRAN, BASIC, C, FORTH, LISP, COBOL.

mean search times still increase rapidly as the load factors increase
further. An example of double hashing is shown in Listing 2 and
Figure 3. Even though the mean number of probes per search is lower
for double hashing than for linear probing, some sequences of keys
may result in table arrangements in which the number of probes per
search is greater with double hashing. As a way of testing your
understanding of hashing, try the average number of probes per
successful search for the keys in the tables shown in Figures 1 and 3.
Then try entering the same keys, but in a different sequence, and
recalculate the average number of probes per search.

Another way to resolve collisions is to include a “link” field in each
record and “chain” colliding records into a linked list. There would
be M linked lists, each with a list head, one for each bucket in the
table. The individual lists may be kept in order so that an unsuccess-
ful search need not go all the way to the end of the list. In this method,
the colliders are stored in an area of memory outside the hash table. It
may be another array, from which available nodes are taken as
needed; or in PASCAL, the additional memory could be allocated
dynamically with the “new” function. One disadvantage of this
method is that if two blocks of storage are allocated, one for the table
and one for storing colliders, it is possible that one block may
become full while the other still has space left, so that “overflow"”’
occurs before all the available space has been used. One way to, at

least, postpone the number of entries that can be made before a table
overflow occurs, is to have more than one slot per bucket. If there are
b slots per bucket, collisions are no problem until an attempt is made
to enter a record into a bucket that already contains b records. In this
case, the colliding record must be stored in an overflow area, and
linked to the original bucket by a link at the end of the full bucket that
points to the location of the collider.

The coalesced chaining method is one of the best collision resolution
schemes available. Its only disadvantage over open addressing
methods is that an additional link field is required for each record. Its
advantages are that it is easy to program, the average number of
probes per search is less than 2.0, even when the table is full, and
overflow does not occur until all the available space has been used.

In coalesced chaining, the table is divided into two sections, the
““address region’’ and the ““cellar”. The cellar is reserved for storage
of colliders. The slots in the address region are numbered from one to
M and the slots in the cellar are numbered from M + 1 to MT, where
MT is the number of slots in the entire table. To simplify discussion,
the first slot will be considered the “top” of the table and the MTth
slot will be considered the “bottom’. The hash function H trans-
forms a key into a number from 1 to M. As in the hashing schemes
described above, this address is probed first. If this slot is empty, the
record is inserted; if the record contains the current key, the search is
successful. Otherwise, a collision has occurred. As in separate chain-
ing, the colliders that hash to the same original address are linked
together with the record at the original hash address at the head of the
list. Unlike separate chaining, no auxiliary storage is needed. In-
stead, colliders are stored in the table; a collider is stored in the
vacant slot with the highest number (the bottom-most empty slot)
and linked to the record at the original hash address. The first MT - M
colliders will all be stored in the cellar, after the cellar becomes full,
the address region can be used for storage of colliders. When the
cellar is full, the next collider will be stored in the bottom-most

SLOT K KEY ORG ADDR LINK
1 0 0 0
2 514 HEATH 2 23
3 458 HEATH 3 22
-4 345 H89 - 16
5 0 0 0
6 0 0 0
7 500 PASCAL 7 20
8 463 COBOL 8 0
9 388 HUG 9 19
10 0 0 0
11 0 0] 0
12 0 0 0
13 430 HERO 13 0
14 450 BASIC 14 0
15 0 0 0
16 440 LISP 4 0
17 320 H8) 7 0
18 530 ZENITH 18 0
19 483 FORTH 9 0
20 291 C 7 0
21 572 FORTRAN 3 0
22 363 Z100 3 21
23 514 MARKER 2 0

Figure 4. Example of hashing with coalesed chaining. In all figures, the keys
were entered in the following sequence: REMARK, MARKER, HEATH,
ZENITH, H8, H89, Z100, HERO, HUG, PASCAL, FORTRAN, BASIC, C,
FORTH, LISP, COBOL.

REMark * October « 1984

7

empty slot in the address region. This process can continue until the
table is completely full. See Figure 4 and Listing 3 for examples.

There are a number of variations on the basic coalesced chaining
algorithm (10). ““Standard’ coalesced chaining is a special case in
which the cellar size is zero and all colliders are stored in the address
region. Separate chaining is actually a special case of coalesced
chaining, in which the storage of colliders in the address region is
forbidden. Thus, although search times may appear to be better for
separate chaining (5), the differences are actually due to the way in
which the term "load factor” is defined (10). The definition of ““load
factor” for separate chaining is usually defined as N /M and does not
include the auxiliary space used for storing colliders. The definition
of load factor for coalesced chaining is usually N/MT, and so does
include the space used for storing colliders.

resolution algorithms available. If conserving space is more impor-
tant than conserving time, one of the better open addressing
techniques would be a good choice.

o a
=) =
Although there is no single ““best”’ cellar size, setting the cellar sizeto 3 : :’e.g
14% of MT seems to be a good compromise(10). Fewer collisions E 9 E
occur when the address region is larger, but the cellar overflows: cir — : i
sooner, “‘Early insertion coalesced chaining” is another variation. In 4 E < &
= s " . . . =
this method, instead of inserting a collider at the end of a chain, the 2 é S & %
collider is inserted between the record at the original hash address 0 a4 s]
2 A E 5 7 - = [4] =
and the next record in the chain. This technique has some disadvan- o G 5 =2 & z E
tages that are overcome by the ‘“varied-insertion” method. In = = 8dg @ 3 = - n
varied-insertion coalesced chaining, records are inserted asinearly & & g & E o ‘T A s I m
insertion, unless the cellar is full and the record at the original hash ~ «] R S Ll 8F =
address s linked to a chain in the cellar. In this case, the recordis " ™ " g8 B oyl ¥ @
i i i i i B a Lo~2g 5 g £ alwh @
inserted in the chain after the Ia_asl cellar record in the chain. Im- g "2 =_ec8 2 g8 2 & T 8 2
ple’mentlalions of coalesced chaining that allow deletions are de- —=zg 7 I E % E'E e g z & © g oo g
scribed in reference 10. ?EMHEEZQ ag8 &Y 8 _13dds 8
. . - s e 5] .- [= s (5]
In summary, if one can afford to set aside the additional space forlink = b B 2 gmEER & 2
. oy H . .
fields, coalesced chaining is probably one of the best collision 1 = W
“ =
< 2
-
= I
z =
o 5 g
- ~ : *
E » . 7
= 2, 5 2
% = - % =
g =] = » 3
| S = = °
g ! g " =
(3 - @ 1] = }G
= E - z & =
T 3] o 3 n‘ =
g 3 g , %4 B 2
ﬁ 3 a = s & = .
- E ; s =] » b = 3
= o 2 - w E & a8 g
:} o o 2 * d 5 o = * = | -
E n & g @ 3 z + €& a B
& 3 & 2 2 & ® - B .
s E - " 5] o = o e [E o
™~ a — a g [} = =
A 9 - 3 it & B ~ @ =] +B 3 -
g 8 s §835 E B . gE B= 8o “E_g =
2 « £ o 8% 8 v 4 w8 C°ST F HE 'G5, gE=n
3 a = Z = ~v= @B BEsr o 5~ H HERE 82
g g_v2y g 2VE 2. EB=u4\® Bp oi° 4zfEY E.F
g 9 =t A““E g 5 ""E i HE1 =", L ﬁngm 2
S 2s wmolEx Eg * s =2 g"'a = Erz"a-~ = "d~ 'E 2B <5
< & | w*iun xgému b o« [H=EoQ B ——H O —H 1 _
" Zw8z SZ BT THY a0 _@'BE22% R8O R"Y EB2
teaBE8E S gtz onlept Beeg 8lvdE: ﬂzﬁﬁgﬁﬁﬂvgﬁz E
= Ede=== T S3ER BeERANE SR ot gy
EEFEEEEETI T NS VI EE R PELTE P PR FEEETCET S T
g :
(=] (o= = oooOo =} Qoo o oo (] ooo coocoooooaQ oo (= =]
okgengessd B8EERGIY BIBZEEE83 SHY SECY BECPIREBRERR3 883
28 REMark * October = 1984

W-1 INIJ3d ov
W SI FZIS FTEVL : NOILVZITVILINI 1€Vl fhct| og
e o0z
ONIHSYH T16N00 FLVHMISNOWAQ OL WYHOOMd ¥ lictt] (1}
T Bunsi
‘aNd
Heilic|
o= xan[1la
‘0= ¥ [1l1
‘0 =: ¥ [1ls
NIDEE
00 N OL 0 =: I Hod
D= N

{ @18vl AZITVILINI _.
{ LINI } NID3g
SLINI 3¥Naaoodd

{ auaag } ‘anz
‘aNa
1aNd
!QIHSINIA TIINA
Hallkc |
‘aNd
T =L
o= kEn(1la
‘o= ¥H' [1]L
‘o = ¥ (1la
(1l = [rla
{ 04o03¥ ¥V FAOW }
NID3E NIHL
(((¥=>I)aNv(I>r))do((I>r)aNy(r>¥))do((r>¥)anv(¥ => I))) LON 4I
{ 1 Lo1S NI X3 40
SSAYAAY HSYH TYNIOIMO } ! (H ' [I]L)H =: ¥
NIDZE
4STd 3N¥L =: QIHSINIA NFHL 0 = ¥ [I]L 41
N+ I=INSHL O > T J4I
T-1I=1
Lyaday
I = p
o= kan[1]a
‘0= ¥ [Ila
0= A [1l1
NID3d
IFHIHM = T
NID3g
as13
(,376YL NI LON SI.'S)NTALIMM NIFHL FTGVLI NI LON 4I
(@TEVL NI ‘F¥EHM 'S)aNId
{48TVd = QEHSINIS
NIDag

INVII008 © QIHSINIJ “dTEVI NI
‘MADAINT ¢ ¥ 'p "I "IHEHM
HYA

! (NVET00d

:ang
N+ I =1INdHL 0 > I 4I
P -I =1
NIDZg
0a (0 < ¥ [I]L) aNv (S <> A3N°[I]l) TTIHM
o)H = 1
1(S)IM3ANOD =: D
NIDad
‘MEDEINI ¢ I
VA

FTEVL NI MYA ‘HEOEINI © LOTIS HYA (ONIMLIS @ S)ANIJ FMNQIO0Nd

(« IMAANOD «) ‘aNz
'IM =: LMIANOD
‘([rlsH)ado + IH =: I¥
00 8 0L T = I ¥0d
‘o = Id
NID3d
'MADFINI ¢ IN ‘I
¥VA
‘MIDHINI : (ONTYLS @ SH)IMIANOD NOILONNA

‘ang
N QoW X =: H

NID3g

'MIDEINI : (HIFDILNI ° X) H NOILONNJ
‘MVHO 40 F1Id : J
‘MEDALNI I
{ 3718VL NI A3¥ J4I 3NHL } NVETO08 : L NI
{ A3¥ INIWEND 40 FTEVL NI NOILYOOT } ‘MIDILNI : 0071
{ONIMLS @ ONIMISAZN ‘ONVANWOD
{ ONIMIS QILHIANOD INIWMND } ‘MEDAINI : 2
{ L 319vL NI SHTMINZ 40 MEEWAN } ‘MIDALNI © N
{ 3719VL HSVH } ‘AMINI 40 [N "O]AvMYy @ L

HYA
‘aNd
ONIMIS © AFA
‘¥EOAILNI : WH
'EDFINI A
QH003Y = AMING
'HVHD 40 [XVW “T]AVHNY = INIMLS
dAdAL
‘02 = XVW
{ 3zIs T1avi} ‘€z = W
‘ST = ¥
‘6 = avi
‘28 = NNVIE
LSNOD

{ SNOISITIOD
FAT0STH 0L ONIHOMd HVENIT ONISN ONIHSYH SALVMLISNOWIQ }
{(d)THSYH Wy¥D0Mud
|
ang oLe
0g4 0109 098
(I)3¥H = (r)EAH 131 (al-1:]

29

REMark * October * 1984

02y €ENsS0D 0BS
ANILNOY ONIJ OGNV MELNT WY 0LS

NYNLIY 08F

I IXIN OLY

((T'I'$ATM)SAIN)OSY + ¥ = ¥ 13T 09

8 0L 2 = I ¥0d 0S¥

((SAZNINTT - 8)$EOVLS + $AEM = $A3M NIHL 8 > ($AIUINIT JI O¥P
(834)OSV = ¥ OEP

ANILNOY NOISHEANOD AZM WIM 0P

W3Y OT%

T+ (W QOW XI) = (XI)HNJ 43d 09T

(LW)HNIT WIQ 0ST

(LN)¥MH WIQ OvT

(LW) 803 WIQ DET

(IW)EL WIa 02T

£2°°08 SLOTS = ¥VTIE0 '67° T SLOIS = NOIDIY SSIHAAV WY OTT
6T = N 131 00F

L01S ALJWE LSOWWOLLO™, FHL ONI4 OL 03sSn HIINIOL V SI ¥ WIY 06
T+ IN = %4 137 08

€2 = LN 131 0L

V310 09

W-I LNIJ3a D¢

N SI JZIS NOIDZEY SSIWAAY WIM O

IN SI dZIS 378VL TTVLIOL @ NOILVZITYILINI I16VI W3M OF

Na¥ 0%

€ Sunsn

{LINI} :and
QNI
pich BB O A
: HeH (1o
CTH[1]a
=! ¥ [I]1
NIDZg
00 K OL O =' I ¥od
‘o= N
{ 319Vl IZITVILINI }
{ LINI } NIDZg
{LINI FHNAEO0Md

oo
L=]

1aNd
1S Jd)NTILTYM
Aad [1o01s 1L
¥eH' [L0TS L
WIH' [107S 10
=: ¥ [1o1s]a
T+ N=IN

NIDEg

‘s
“(9)zH
{(0)TH

o

{(YEDALNI : LOTIS ‘ONIMIS @ S)¥ILNZ FHNAID0¥d

{ gu1d } ‘anz
‘aNE
!I = LOTS

'FNYL =: 3T8YL NI

quooay = AYLNE
'MVHD 40 [XVH™ " T]AVEMY = ONINIS
adAlL

02 = XVN
{ az1s a1avi} 61T =W
ET =MD
£ avl
NVIE
LSNOD

o
X 0

‘ge

{ SNOISITI0D
FATOSIM 0L ONIHSVH ATENOd ONISN ONIHSVH SALVHLSNOWZAD }
£{4'LNdLN0 ‘LNdNT)OHSYH WVHDOHd

and 08l

NYNLIY DLL

W nI'w LOIS IV SI u !$AEM INIMd NIHL $X3¥ = (I)$03¥ 41 094
0g£g dNSod oS

ANILNOYENS ONIJ WIM ovL

NYNLIY (a}9

(A)THN = (I)PHH 131 0ZL

$x33 = (I)%03¥ 131 otL

A= (I)% 1a1 0oL

T+ N=N LI 069

NYNIEY : , MOTJHIAO. INI¥d NIHL T — W = N 4T 089
NYNLEY: FTEVL NI ION ST o "$A3H INIMd NIHL (.ONId, = $0) 4I 0L9
FIEYL OINI ¥EINZ WaH 099

079 0L0D 0s9

NYNLEY NEHL $A3¥ = (I)$03Y 41 ore

099 0LOD NIHL (0 = (I)¥L) 4I Dg9

W+ I=1U37NHL 0 > 1 41 029

r=-1I=1331 n) -]

(M)ZHNd = P o0o9

HSYH aN0J3S 04 NOISITIOO d4I Wad 065

NMALEY NEHL $A3M = (I)$03Y 41 08s

099 0L09 NEHL (0 = (I)%L) 4I 0LS

() THNE = I 1371 098

SSAYAAY HSVH TTVNIDIHO OL HSVH W3y 0sg

09¢ €NS09 ovs

ANILNOY ONIJ ANV H3LNZ flict:| 0gS

NYNLEY ozy

I IXaN (5)43

((F'I"$AZM)SAINIOSY + M = ¥ 131 ooy

8 0L 2 =1 ¥0d D6E

(($AEH)NIT — 8)$30VdS + $A3H = $A3M NIHL 8 > ($AFM)NIT 4T 0sg
($x34) SY = ¥ oLE

ANILNOY NOISHIANOD AZH WIH neg

T + ((2-W) QOW XI) = (XI)2HNd 43 [5) 44

W QOW XI = (XI)THNd J3d ooy

(T-H)Z¥H WIQ 06

(T-W)8034 WIQ 08

(T-W)¥L WIg oL

€2 = N 131 09

¥VITO 0g

REMark + October = 1984

30

‘HYHD 40 3ITId -
‘MIADALNI - W

d
I

{ @19VL NI A3N 41 3N¥L } INVET00d : I NI
{ AZM LNIWYND 40 F1EVI NI NOILYDIO1 } ‘MEOEINI : 2071
!ONIMLS ¢ DNIMISAEN “ANVAWOD

{ ONIMLS QIINIANOD LNIMMND } ‘MIADIINT
{ 1L 379Vl NI SIIMINZ 40 ¥IEWAN } ‘MEIDILNI
{ @78VL HSVH } ‘AMINZ 40 (1N "OJAVMMY :

HEDALNI ‘HNIT
‘ONIMLS : AEM
‘MIDAINI : HH

2

PN

€L
HvVA

IMEDFINI ¢ M
aqd003Y = AMINE
‘MVHD 40 [XVK T]AVIMY = ONINLS
AL
‘02 = XV

{ ¥ SI 9ZIS ¥WVTIIO0 'NOIDIY SSIMAAY 40 FZIS } ‘61 =

{ 3z1s FavL } €2 = IW
€1 = ¥D
‘6 = @vl
'2¢ 8 Huelq
18U00

{ SNOISITIO) 3AT0S3Y OL ONINIVHO GIOSITVOD ONISN ONIHSYH SALVHLSNONIT }

and

NYNLIY

W u'I'w LOTS IV 3TEVLI NI SI . ‘$A3M INTHd
NYNLEY

W 3TEVE NI LON SI u ‘$A3M ININd

NYNLEY

0 = (I)NNIT 131

FH = (I)%AH

$13M = (I)%08y Ld7

A= (I)%L 131

™ =1I 131

N = (I)UNIT 131

ATEVL NI AN MEINZ ‘MOTJHIA0 LON 4T W3M

098
ose
ove
oge
(554]
o8
064
0sL
0OLL
o9L
DL
orL
ogL

NENLIY

1 wMOTIYIAO, INTMd NIHL O = 3¥ 4I
aNEM
T - % =2y 131
0 <= (F¥)3L ITIHM
T - 3= 3 13T
028 0L09 NIHL (.aNId. = $0) 4T
¥ILNI 0L LO7TS ALJWA LSORNOLLOE ANIS—TINASSIIONSNN HOHVIAS WAH

ogL
5197
oo
ae9
o89
aLe
g9g

0¥9 0L0D

D(I)MNIT = I 13T NEHL 0 < (I)MNIT JI
O¥8 0109 NEHL (I)$03¥ = $A3M 4T
INJSSIIONS HOWYAS 41 FIAS 0L HOFHO WaH
Q3II4No00 39 ISNK I LOTIS WM

09L 0L09 NIHL 0 = (I)¥L 4T

I=3%H

[H)JHNd = I 131

os9
ov9
og9
oz9
ors
ooe
oes

*(NVET008

NIDag
{ 1n4dsszoons } 3s1d
ang
{ ¥3INZ A€ 3Sn
H0d 1071S NYNL3Y } I=: 101 3s73

{ MOT4¥3A0 TVYNOIS } W=: LOIS NGHL T — W = N dI
‘@STVA =: FTEVL NI
NIDag
NZHL (0 = ¥ [T]L) 41
‘anNa
(s = a3ad [1)]1) ¥o0 (0 =¥ [I]L) TIIND
W+ I = INIHL O > I 41
p=-XI=1 I
1vaday
‘(0)gH =:
NIDZg
N3HL (S <> &3¥ [1]1) anvy (0 <> ¥ [1la) 41

{ 7ndsszdonsnn }

{ HSVH aN00ZS }

{ HSYH ISMIJ } “o)tH = I
(S)L¥3ANDD =: D

NID3d
CMEOFAINTI ' ‘I

HVA

D ETIEVLTNI MVA CMEDELNI ¢ LOTS ¥VA ONIMIS :© S)ANI4 FHNQED0Md
(s LMFANOD «) ‘ONZ
IM =1 LMAANOD
Hl1lsd)ado + IN = IH
00 8 0L T = I Hod

‘0= I¥
NIDZ3d
‘MEDALINI ¢ IN I
HVA
"HEDILNI (ONIMLS * SH)L¥ZANOD NOILONNA
‘anNa
T+ ((2— N) dOW X) =: 2H
NID38g
‘HEOFINI (MEDFINI : X) 2H NOILONNS
Heliic)
‘W aon X =: TH
NID3d
‘MIDEINI © (MEDFINI : X) TH NOILONNA

'MVHO 40 &TId © J
'MEDEINT © I
{ 3718VL NI A3 41 INY¥L } ‘NVET008 : L NI
{ A3¥ INIWHNO 40 FTEVL NI NOILVOOT } ‘MIDIILNI : 2071
!ONTYLS @ DNTMISA3N ‘ANVRNOD
{ ONINIS QIIMIANOD INIMMND } 'MIADFINI : 2
{ L 378¥lL NI SITHINZ 40 HEEAWNN } ‘HIADFINI : N
{ T19VL HSYH } ‘AMINZ 40 (W' 'D]AVMMY @ L
HVA

‘ang
ONIMLS : A3
"HIDALNI : ¥2H
‘HEOFLNI : MIH
‘HEDALNI - H

31

REMark + October * 1984

:= FALSE;

1

:= 0 TO MT DO

BEGIN
ENTER(S,I);
IN_TABLE
{ FIND }

END;

~—>
END;
BEGIN { INIT }
{ INITIALIZE TABLE }
N := 0;
R := MT +

References

1. Amble, O., and Knuth, D. E., “Ordered Hash Tables”, The Com-
puter Journal 17:135-142, 1974.

2. Brent, Richard P. “Reducing the Retrieval Time of Scatter Storage
Techniques.”, Communications of the Association for Computing
Machinery 16(2):105-109, 1973.

3. Day, A. C., “Full Table Quadratic Searching for Scatter Storage”,
Communicatons of the Association for Computing Machinery,
13(8):481-482, 1970.

4. Horowitz, E. and Sahni, S., Fundamentals of Data Structures,
Computer Science Press, Rockville, Maryland, 1982.

5. Knuth, D. E., The Art of Computer Programming: Vol. 3, Sorting
and Searching, Addison-Wesley, Reading, Massachusetts, 1973.

6. Knuth, D. E., “Algorithms”, Scientific American, 236(4):63- 80,
April, 1977.

7. Maurer, W. D., “An Improved Hash Code for Scatter Storage”,
Communications of the Association for Computing Machinery,
11(1):35-38, 1968.

8. Radke, C. E., “The Use of the Quadratic Residue Search”’, Com-

e ? munications of the Association for Computing Machinery,

Salto 13(2):103-105, 1970.

. =

w ¥ Eﬂ " 9. Standish, T. A., Data Structure Techniques, Addison-Wesley,
zARER E Reading, Massachusetts, 1980.

= 10. Vitter, J. S., “Implementations for Coalesced Hashing”’, Com-
a munications of the Association for Computing Machinery, %
& 25(12):911-926, 1982.

: INTEGER;

: INTEGER;

INTEGER)
INTEGER;
i TO 8 DO
:= KI + ORD(KS[I]);

H:= X MOD M + 1
FOR I :

BEGIN
END;
I, KI :
BEGIN
KI := 0;
KI

FUNCTION CONVERT(KS : STRING)

VAR

FUNCTION H (X :

: BOOLEAN) ;

o [}
g |
[—o' [—-—
z = n ¢
8 -~
: 1: oy o
. g ° 2 £ 5
E B0 ‘E
8 g o uH g
£ a8] Z £ SE -
. . E oS < - B o
6 2 2 g 25 S 3
S 5 E @ 4 8
77 o1 i o ":dE =
« = g = -~ = =] =
% - | =2 [=]
= & e <~ e 20 © =
2 B = a e g >
ax E o wn - 1] o o
s : PRk g
7 s 0 O - " =
E N S & E - EE 5E & -y g
=y A, STy i E . Og i E“ E E E =
IR . iz oy ax
g o . B .r1tlg @ oo H.EE g %8 & .o ZE g
= % E ﬁ - Elﬂ- 0 Bz - E 01!:] [} % I E
I; & o +=¢EE -, -—-3:. 5 — 0 byt o L8 o
e [P bt S S (_mt-o" z = - =

o g E 2R B & Z2Zzo " ﬂ-—-s« . =X B E LB [~ N] &
[z '3 nE S8 ~=znrt3 b= R~ BH -mHg 0 @ -"

48 L ; LU:I:HHE-—-&. = | =] [T - | - et
ﬁ az wan - LEEEHNE HZE [" “TZ- 8 H_fe o
; . 0 -—--—.-—E-. [] =1 = ol | — = | =

s e - [- = %]
Bs5 . EETTTTEE glle® + Cud 2IEE & Fado AR
B E : . e L

fd
¥

REMark * October + 1984

Dear Hug:

| have a comment on Mr. Frank Cepulkowski’s subroutine in the
August 1984 issue, Page 9. ASCII characters that the capital letters
are decimal values starting with 41 for “A”" and ending with 90 for
“Z". The lower case letters are decimal value of 97 for lower case

T

“a" through 122 for lower case “z".

Microsoft Basic-80 has a function called ASC(X$) which returns the
decimal value for the string X$. Now if one tests the ASC(X$) for
greater than 90. If the value is greater than 90, one only has to
subtract 32 from the ASC value and convert back to ASCII character
by using the CHR$ function. Then you have a lower case letter
converted into a capital letter. The coding is as follows:

10 LINE INPUT,X$

20 FOR I=0 TO LEN(XS$)

30 IF ASC(MID§(X$,I,1))>90 THEN

MID$(X$.I,1)=CHR$(ASC(MID§(X$.I.1))-32)
40 NEXT I

Sincerely,

John Pierrel

Attn: ““My Favorite Subroutine”

Reference is made to the “force upper case’’ subroutine by Frank
Cepulkowski in the “My Favorite Subroutine’ section of the August
1984 issue of REMark.

Upper case forcing subroutines are very useful in keeping alpha
input “constant’’ for comparison and ordering subroutines. If | read
the referenced subroutine correctly, it forces all input to a second
variable. Probably, the subroutine would work more efficiently if it
were reconfigured as:

10 X$=INPUT$(1):IF X$>CHR$(96)AND X$<CHRS(123)THEN

X§=CHR§ (ASC(X$)-32)
20 PRINT X§,:GOTO 10

This configuration of the subroutine keeps boolean operations and
number of variables used to a minimum. It also “forces” only lower
case |etters. Other input remains unaffected.

Sincerely,
Carl Edwin Lovett, Jr.

PS: Highly flattered you printed my favorite subroutine (the julian
algorhythms) in same issue. It boosted the confidence of an untu-
tored computer nerd (me).

Dear Sirs,

Enclosed please find a routine in MBASIC (and sample output) which
will print out a conversion chart for Fahrenheit to Celcius, from 97 to
106.9 degrees Fahrenheit. Someone may find it useful for a medical

‘“My Favorite Subroutines”

thermometer which reads out in the wrong units.

The program assumes that the printer is set to 80 columns. | tried to
make the program reasonably short to key in.

Thank you for your attention.

Sincerely,

P.G. Manney

10 LPRINT TAB(28):"TEMPERATURE CONVERSION CHART"'TITLE
20 LPRINT TAB(28B):" " : LPRINT:LPRINT

30 A$=" FAHR CENT " :B§=" —— -— ¥

100 F=97:GOSUB 500 'SECTION I
200 LPRINT:LPRINT:F=102:GOSUB 500:END 'SECTION II
500 FOR I=1 TO 5:LPRINT A§::NEXT I:LPRINT '"HEADINGS
510 FOR I=1 TO 5:LPRINT B$§::NEXT I:LPRINT:LPRINT

520 FOR I=1 TO 10

530 FOR J=1 TO &

540 C=((F-32)%*5)/9 ' CONVERSION

550 LPRINT USING "####. #":F; :LPRINT" *;
:LPRINT USING "###.#";C; :LPRINT" ";

560 F=F+1

570 NEXT J

580 LPRINT:F=F-4.9

530 NEXT I

600 RETURN

100 '
110 '
120 !

##* SCROLL PROTECTION ROUTINE ***

PROGRAM PEEKS AT MEMORY LOCATIONS AND RETURNS
DEC VALUE STORED THERE

130 ' IT WAS WRITTEN PRIMARILY TO 'FILL THE SCREEN'
AND THEN DEMONSTRATE

140 ! TITLE SCROLL PROTECTION ROUTINE

150 '

160 ' TOM MUJICA HUGNJ 8/28/84

i70 ' 309 HIGH ST. NORWOOD NJ 07648

i80 '

190 CLS

200 PRINT"MEMORY LOCATION| VALUE STORED"

210 X=1

220 Y=119

230 FOR I=X TO X+Y

240 PRINT I;") "; PEEK(I):;" ";

250 IF I MOD 6 =0 THEN PRINT

260 NEXT I

270 PRINT

280 X=X+120

290 LINE INPUT"CONTINUE <Y> OR <CTRL-C> ? ";Q$

300 ! *** TECHNIQUE FOR SCROLL PROTECTING
CHART OR TABLE HEADINGS ***"

310 IN THIS EXAMPLE ONE LINE OF 'TITLE'
IS SCROLL PROTECTED

320 ' BY LOCATING CURSOR ON 2 nd LINE AND

ERASING TO END OF SCREEN
330 LOCATE 2,1
340 PRINT CHR$(26);
350 GOTO 230

360 END %

REMark * October + 1984

33

P/N 885-1238-[37] CP/M
ASCIRITY .oovverrererensensessssssssssssasasssns veere $20.00

Introduction: The program ASCIRITY is written for the Microsoft
Basic Compiler and Macro 80 Assembler on the Heath H-89 compu-
ter with 64k of RAM and the CP/M operating system. With the
proper interface or terminal unit and appropriate transmitting and
receiving equipment, this program may be used to send and receive
amateur radio RTTY and ASCII at all popular baud rates or transmis-
sion speeds (wpm).

ASCIRITY features include transmission and reception of. baudot
RTTY at45, 50, 54, or 74 baud; and ASCII RTTY at 110 or 300 baud.
A CQ message of up to 256 characters is automatically loaded and
can be sent at any time by pressing two keys. A bragfile, or any ASCII
file may be sent from disk. Lower case letters are converted to upper
case for baudot transmission.

When text is entered from the keyboard for transmission, a line feed
(LF) is inserted after each carriage return (CR). A line length of 72
characters is standard for most of the mechanical teleprinters in
amateur use, and when text is entered from the keyboard, this
program will insert a (CR) and (LF) after 72 characters, if none is
typed. No (CR) or (LF) insertion is made when transmitting a file from
disk. For baudot operation, the LTRS and FIGS characters are sent
twice for each case change. This is to help insure good copy of your
transmissions.

Transmitted and received data may be optionally stored to a 6000
character memory buffer, which can later be written to disk, if
desired. There is a 1024 character transmit message buffer which
may be filled from the keyboard while receiving or transmitting. If
either of these buffers approaches being full, the terminal bell will
sound with each new character.

Requirements: This software requires a Heath H/Z-89/90 with 64k
of memory and a standard 3 port serial interface. An H/Z-19 and H-8
with 64k of memory and a standard 4 port serial interface will also
work, Either system must be running the CP/M operating system and
have at least one hard or soft sectored disk drive,

ASCIRITY is designed to communicate with most popular ham radio
interfaces, (including the Heath HD-3030), or terminal units through
the computer's RS-232 port at 330Q.

UG robocrs

NOTE: The [-37] means the product is available in
hard-sector or soft-sector. Remember, when ordering
the soft-sectored format, you must include the **-37”
after the part number; e.g. 885-1223-37.

The following files are included on the HUG P/N 885-1238-[37]
ASCIRITY disk:

ASCIRITY .BAS
ASCIRITY .COM
ASCIRITY .DOC

Author: Allen Gilchrist, Jr.

Program Content: After ASCIRITY is executed, the top line of the
display indicates the present mode, baud rate, and storage status of
the program. The next two lines are in reverse video, and briefly state
the functions of the control sequences. The next eight lines are the
transmitted data display, and the output buffer display. The lower
half of the screen is reserved for received data.

.DAT
.DAT

BRAG
cQ

RTTYSUBS .MAC
README .DOC

The control sequences recognized by the program are (ctl-A) through
(ctl-F). The function of these control codes are as follows:

ctl-A -Switch to transmit and send the CQ message.
ctl-B -Set new baud rate or mode.

ctl-C -Save memory buffer to disk and/or exit to CP/M.
ctl-D -Storage mode toggle switch.

ctl-E -Transmit/Receive toggle switch.

ctl-F -Transmit an ASCII file from disk.

Comments: none
TABLE C Rating: (0), (2), (5), (9)

P/N 885-8031-[37] CP/M
MORSE CODE TRANSCEIVER Ver 2.0 .. $20.00

Introduction: Morse Code Transceiver Ver 2.0 is an 8080 assembly
language program, which provides the operator with the ability to
send or receive morse code over a wide range of code speeds,
dot/dash ratios, interference, and noise conditions. In addition, the
precision speed feature is intended to be used whenever extreme
transmit code speed accuracy is required.

The precision morse code speed algorithms used in this program
were originally developed as part of a set of custom H89 programs
for the American Radio Relay League’s Maxim Memorial Station
‘WTAW’ at A.R.R.L. Headquarters in Newington, CT.

Requirements: This program requires the CP/M operating system
version 2.0 on the H19/H8/H17 or H/Z89 with 48k of memory.
Only one drive is required, however, two are recommended.

All1/0 is at RS232C levels via the DTE port. External equipment is
required to interface the RS232C level 1/O signals to the amateur
station equipment. Design details were published in REMark Issue
33, October 1982, Page 17.

Note: The algorithms used for morse code decoding depend on

timing from the internal clock. Therefore, this program will perform
properly only on a standard machine running at 2.048 MHz.

The following files are included on the HUG P/N 885-8031-[37]
MORSE CODE TRANSCEIVER disk:

.MAC RXINT SAVMSG
RXLOP CODETBL RMP
us250 TXSPEED README
VARTBL TXLOP

Author: Robert R. Anderson K2BJG

Program Content: Morse Code Transceiver can receive and transmit
standard morse characters, as well as special morse characters, such
as (AR), (SK), (BK), (KN), (BT), and (AS). Both upper and lower case
key input and screen display is allowable.

The CWDATA.DAT disk file contains eleven multi-character groups,
which can at any time be read to the currently selected buffer and
display screen. This file contains commonly used abbreviations and
space for the station call sign and station location.

Two transmit buffers selected by the ‘12’ key will transmit up to 254
characters. Ten message buffers can be loaded or cleared under
control of the ‘{1’ key. Any selected message buffer can be transfer-
red to the transmit buffer. These 10 buffers are saved in
SAVMSG.DAT.

Disks can be changed and ASCII disk files can be loaded without
leaving the program. The memory buffer extends from the end of the
program to the top of available memory.

The receive program operates in three modes: LOCK, TRACK, and
HOLD. The transmit program operates in two modes: NORMAL and
DISK FILE. The modes can be manually switched to any of the
modes.

The available precision fixed Tx speeds are: 55P, 05, 7.5, 10, 13, 15,
18 WPM, and 20 through 70 WPM in 5 WPM steps. The morse code
speed standard used in fixed speed mode is in accordance with
amateur practice of one word being defined as consisting of 50
elements.

The screen display is split into three areas for viewing the receive or
transmit data, the selected transmit pre-type data, and the selected
message buffer data. The screen is also used as the command screen
and for display of error messages. The program will not allow for
improper keyboard commands to take place.

Printed documentation comes with the disk and does an excellent
job of helping the beginner learn how to use Morse Code Trans-
ceiver.

Comments: The author has done an outstanding job with this CP/M
version.

TABLE C Rating: (0), (1), (3), (5), (10)

P/N 885-3016-37 Z-DOS
ADVENTURE DISK smavenssane 31000

Introduction: Adventure is one of the most well known and best
liked computer games. It is an adventure through a giant cave to
search out and find treasures. Many dangers, as well as puzzles to
solve, are instore for the user who ventures into its midst.

Requirements: This game requires the Z-DOS operating system on
an H/Z-100 computer. This game will also work properly with the

MS-DOS operating system on an H/Z-150/160. In either case, this
program requires around 75k of memory. Only one 5.25" drive is
required.

The following is a list of the files on the HUG P/N 885-3016-37
Z-DOS Adventure Game disk.

ATAB
README

.DAT
.DOC

ADVENT
AINDX

.EXE
.DAT

Authors: This program was originally developed by Willie Crowther.
Most of the features of the current program were added by Don
Woods (Don SU-Al). This microprocessor version was done by Brian
Barnes and Dave Sandage of Zenith.

Preparation: To run ADVENTURE under Z-DOS or MS-DOS, simply
copy the three adventure files, ADVENT, AINDX, and ATAB to a
bootable disk and type ADVENT at the system prompt.

Program Content: Somewhere nearby is a colossal cave, where
others have found fortunes in treasure and gold, though it is rumored
that some who enter are never seen again. Magic is said to work in
the cave. | will be your eyes and hands. Direct me with commands of
one or two words. | should warn you that | look at only the first four
letters of each word, so you'll have to enter ‘northeast’ as NE to
distinguish it from ‘north’, ‘dnstream’ for ‘downstream’, etc. Should
you get stuck, type ‘help’ and ‘info’ for some general hints.

Help: | know of places, actions, and things. Most of my vocabulary
describes places and is used to move you there. To move, try words
like forest, building, dnstream, enter, east, west, north, south, up, or
down. | know about a few special obje<ts, like a black rod hidden in
the cave. These objects can be manipulated using some of the action
words that | know. Usually you will need to give both the object and
actionwords (in either order), but sometimes | can infer the object
from the verb alone. Some objects also imply verbs; in particular,
‘inventory’ implies ‘take inventory’, which causes me to give you a
list of what you’re carrying. The objects have side effects; for in-
stance, the rod scares the bird. Usually people trying unsuccessfully
to manipulate an object are attempting something beyond their (or
my!) capabilities and should try a completely different tack. To speed
the game, you can sometimes move long distances with a single
word. For example, ‘building’ usually gets you to the building from
anywhere above ground except when lost in the forest. Also, note
that cave passages turn alot, and that leaving a room to the north does
not guarantee entering the next from the south.

Suggestions: Try ‘ENTER BUILDING’. When you see an object, pick
it up. Go 'DNST’ (downstream) if you want to find the cave.

Ordering Information

For Visa and MasterCard phone orders; telephone Heath Com-
pany Parts Department at (616) 982-3571. Have the part
number(s), descriptions, and quantity ready for quick proces-
sing. By mail; send order, plus 10% postage and handling
($1.00 minimum charge, up to a maximum of $5.00. UPS is
$1.75 minimum -- no maximum on UPS. UPS Blue Label is
$4.00 minimum.), to Heath Company Parts Department, Hill-
top Road, St. Joseph, MI 49085. Visa and MasterCard require
minimum $10.00 order.

Any questions or problems regarding HUG software or REMark
magazine should be directed to HUG at (616) 982-3463. RE-
MEMBER - Heath Company Parts Department is NOT capable
of answering questions regarding software or REMark.

Helpful Words:

INVEntory List items you are carrying

SCORe Show your current score

LOOK Long description of current location
BACK Go back the way you came

QuUIT Stop the game and give final score

Command Style: Remember, ADVENTURE takes one or two word
commands only. Make them straight foward like:

ATTACK DRAGON GET GOLD DOWN or D
EAT BIRD WEST or W etc.
THROW AXE UNLOCK GRATE

Info: If you want to end your adventure early, say ‘QUIT". To see how
well you're doing, say ‘SCORE'. To get full credit for treasure, you
must have left it safely in the building, though you get partial credit
just for locating it. You lose points for getting killed, or for quitting,
though the former costs you more. There are also points based on
how much (if any) of the cave you've managed to explore; in
particular, there is a large bonus just for getting in (to distinguish the
beginners from the rest of the pack). | may occasionally offer hints if
you seem to be having trouble.

N EEE LA L 2 & 8 2

GOOD LUCK

Comments: Adventure will provide many months and even years of
fun trying to reach the 366 point goal.

TABLE C Rating: (10)

HUG Price List

Part Decription Selling Volume

Number of Product Price - |ssue
HDOS HARDCOPY SOFTWARE
885-1008 Volume | Documentation $ 9.00
885-1013 Volume Il Documentation $12.00
885-1015 Volume Ill Documentation $ 9.00
885-1037 Volume IV Documentation $12.00 8
885-1058 Volume V Documentation $12.00
MISCELLANEOUS HDOS COLLECTIONS
885-1032 Disk VHB/89cocoviviervieereeeeee. $18.00 8
885-1044-[37] Disk VIH8/89 $18.00
885-1064-[37] Disk IX H8/89 Disk $18.00
885-1066-[37] Disk X H8/89cccoeocvrevnrnenne. $18.00 10
885-1069 Disk XIll Misc H8/89c....... $18.00
GAMES
HDOS
885-1010 Adventure Disk H8/89 $10.00 4
885-1029-[37) Disk Il Games 1 H8/89 $18.00 8
885-1030-[37] Disk Il Games 2 H8/89 $18.00 8

885-1031
885-1067-[37]
885-1068

885-1088-[37]
885-1093-[37)
885-1096-[37)
885-1103

885-1111-[37)
885-1112-[37]
885-1113-(37]
885-1114
885-1124
885-1125
885-1130
885-8009-[37)
885-8022
885-8026

CP/M

885-1206-(37]
885-1209-[37]
885-1211-[37)
885-1220-[37)
885-1222-[37)
885-1227-[37)
885-1228-[37]
885-1236-(37)

ZDOS

885-3004-37
885-3009-37
885-3011-37
885-3016-37
885-3017-37

UTILITIES

HDOS

885-1022-{37)
885-1025
885-1060-[37)
885-1061
885-1062-[37)
885-1063
885-1065
885-1075
885-1077
885-1079-(37)
885-1080
885-1082
885-1083-(37]
885-1089-(37)
885-1090-(37)
885-1092-[37)
885-1098
885-1099
885-1105
885-1116
885-1119-[37]
885-1120-[37)
885-1121
885-1123
885-1126

Disk IV MUSIC H8 Onlyccce...
Disk XI H8/19/89 Games
Disk Xil MBASIC Graphic Games
Disk XVII MBASIC Graphic Games
D&D H8/89 Disk
MBASIC Action Games H8/89
Sea Battle HDOS H19/8/89

HDOS MBASIC Games H8/89

HDOS Graphic Games H8/89

HDOS Action Games H8/89
. $20.00

H8 Color Raiders & Goop .
HUGMAN & Movie Anlmahon Pkg
MAZEMADNESS . .

Star Battle
HDOS & CP/M Galactlc Wamor

HDOS SHAPEScccooovviiiciininnnns
HDOS Space Dropcccceeviveeeeens

CP/M Games Diskccccccvuuninnes
CP/M MBASIC D&Dcccoenueeee
CP/M Seabattlecccccoveeeeee
CP/M Action Games ...
CP/M Adventure ...
CP/M Cassino Gamess
CP/M Fast Action Games
CP/M Fun Disk | ..ocoveiiiiiiinieraenes

ZDOS ZBASIC Graphic Games ...
ZDOS ZBASIC D&D
ZDOS ZBASIC Games Disk
ZDOS/MSDOS Adventure
ZDOS Contest Games Disk

HUG Editor (ED) Disk H8/89
Runoff Disk H8/89ccccceeinne
Disk VII HB/89 ...c.cveevirrcrinierene
TMI Load H8 ONLY Disk
Disk VIII H8/89 (2 Disks)
Floating Point Disk HB/89
Fix Point Package H8/89 Disk ...
HDOS Support Package H8/89 ..
TXTCON/BASCON H8/89
HDOS Page Editorcccocvunnnene
EDITX H8/H19/H89 Disk
Programs for Printers H8/89
Disk XVI Misc H8/89c........
Disk XVIII Misc H8/89
Disk XIX Utilities H8/89
Relocating Debug Tool H8/89
H8 Color Graphics ASM
H8 Color Graphics Tiny PASCAL

HDOS Device Drivers H8/89
HDOS Z80 Debugging Tool
BHBASIC Support
HDOS ‘WHEW:' Utilities
HDOS Hard Sec Sup Pkg 2 disks
XMET Robot & Cross Assembler
HDOS Utilities by PS:cccoviieeee

$20.00
$18.00
$18.00
$20.00

. $20.00

. $20.00
$ 20.00
$20.00
$20.00
$ 20.00

$ 20.00

e $20.00
.. $20.00
. $20.00

$16.00
$ 16.00

$20.00
$20.00
$20.00

.. $20.00

$10.00
$20.00
$20.00
$20.00

$20.00
$20.00
$20.00
$10.00
$ 25.00

$20.00
$35.00
$ 18.00
$18.00
$25.00
$18.00
$18.00
$60.00
$18.00
$25.00
$20.00
$ 20.00
$20.00
$20.00
$20.00
$30.00
$ 20.00
$ 20.00
$20.00
$20.00
$20.00

.. $20.00

$ 30.00

. $20.00

$20.00

25
12
10
14
16
18
20
23
23
23
23
M
4
47
32
45
49

11
19
20
32
35
38
39
55

37
50
52
57
57

20

10

15

11
20
22
14
19
19
24
27
29
33
37
40
42

885-1127-[37]
885-1128-(37]
885-1129-(37)
885-8001
885-8003
885-8004
885-8006
885-8007
885-8015
885-8017
885-8024

CP/M
885-1210-[37]

CP/M ED (same as 885-1022)

885-1212-[37)
885-1213-(37)
885-1217-(37)
885-1223-[37)
885-1225-[37)
885-1226-[37)
885-1229-(37)
885-1230-[37]
885-1231-[(37]
885-1232-[37)
885-1235-37

885-1237-[37)
885-5001-37

885-5002-37

885-5003-37

885-8018-[37)
885-8019-(37]
885-8025-37

ZDOS

885-3005-37
885-3007-37
885-3008-37
885-3010-37
885-3012-37
885-3014-37
885-8029-37

HDOS

885-1038-(37]
885-1042-(37)
885-1059
885-1078-(37)
885-1085
885-1086-37]
885-1094

CPM

885-1208-[37]
885-1215-[37]

BUSINESS, FINANCE AND EDUCATION

HDOS
885-1047

HDOS Soft Sector Support Pkg ...
HDOS DISKVIEW .

HDOS CVT Color Vldeo Termmal

SE (Screen Editor)ccceviiviiiiinnn

uUbDUMP

EZITRANS.

HDOS Programmers Helper
HDOS BHBASIC Utilities Disk

$20.00
CP/M Utilities H8/89c..c.....
CP/M Disk Utilities H8/89
HUG Disk Duplication Utilities
HRUN HDOS Emulator 3 disks

CP/M Disk Dump & Edit Utility ...,

CP/M Utilities by PS:
XMET Robot & Cross Assembler 2

CP/M Function Key Mapper
Cross Ref Utilities for MBASIC ...
CP/M Color Video Terminal
CP/M RDZDOScocoocviaeieiinnas
CP/M Utilitiesccccevmiicnrcnianns

CP/M 86 KEYMAP
CP/M 86 HUG Editor

CP/M 86 Utilities by PS:
CP/M FAST EDDY & BIG EDDY

DOCUMAT and DOCULIST
CP/M 85/86 FAST EDDY

ZDOS ETCHDUMP covevvcnaee

ZDOS CP/EMulator
ZDOS Utilities

ZDOS KEYMAP

ZDOS HUG BRI v
ZDOS/MSDOS Utilities Il
ZDOS FAST EDDYcooovvverercnrane

PROGRAMMING LANGUAGES

Wise on Disk H8/89

PILOT on Disk H8/89c........
FOCAL-8 H8/89 DISK

HDOS Z80 Assembler
PILOT Documentation

Tiny HDOS Pascal H8/89

HDOS Fig-Forth H8/89 2 Disks

CP/M Fig-Forth H8/89 2 Disks ...
CP/M BASIC-Ecooevvvieiiinns

Stocks H8/89 Diskccoconee.

$30.00

. $16.00

$20.00
$25.00
$ 25.00

s B D90
HDOS SUBMIT ..covoncsmmmeesamsmnesansens

$20.00

veeeeeee. 5 30.00
HDOS TEXTSET Formaﬂer

$ 30.00
$16.00
$16.00

$20.00
$20.00
$20.00

.. $40.00

$30.00

.. $20.00

$20.00
$ 20.00
$20.00
$20.00
$20.00
$ 20.00

.. $20.00

$20.00
$20.00
$20.00
$20.00
$20.00

$20.00

... $20.00
.. $20.00

$20.00
$20.00
$20.00
$20.00

$18.00
$19.00
$25.00
$25.00
$ 9.00
$20.00

.. $40.00

$40.00
$20.00

. $18.00

45
46
46
28
28
28
31
30
42
42
46

21
22
26
37
40
40
40
42
43
46
54
55
51
52
54
43
43
49

39
47
47
51
52
54
53

13
21

13
18

18
26

885-1048
885-1049
885-1055-(37)
885-1056
885-1070
885-1071-(37)
885-1091-(37)
885-1097-(37)
885-1118-(37)
885-1131-[37)
885-8010
885-8021
B885-8027

CP/M

885-1218-[37)
885-1233-(37)
885-8011-(37]

ZDOS

885-3006-37
885-3013-37
885-3018-37
885-8028-37
885-8030-37

DATA BASE MANAGEMENT SYSTEMS

Personal Account H8/89 Disk $18.00

Income Tax Records H8/89 Disk $ 18.00
MBASIC Inventory Disk H8/89 $ 30.00
MBASIC Mail Listcccoeeveveneen. $30.00

Disk XIV Home Fin H8/89 . .. $18.00

MBASIC SmBusPk H8/H19/H89 $ 75.00
Grade/Score Keeping H8/89 $30.00
MBASIC Quiz Disk H8/89 $20.00
MBASIC Payrollcccceeeeee... $60.00
HDOS CHEAPCALC $20.00
HDOS CHECKOFFcccccocivneee. $25.00
HDOS Student's Statistics Pkg .. $20.00
HDOS SCICALCcovvvivnerarcnnnnne. 5 20,00
CP/M MBASIC Payroll $60.00
CP/M CHEAPCALC $20.00
CP/M CHECKOFFccc.cccouneeee. $25.00
ZDOS CHEAPCALC $20.00
ZDOS Checkbook Manager $20.00
ZDOS Contest Spreadsheet Disk $ 25.00
ZDOS SCICALCccccovvvverincnenn.. $20.00
ZDOS MATHFLASHcccooeeeee... $20.00

HDOS’

885-1107{37] HDOS Data Base System H8/89 § 30.00
885-1108-[37] HDOS MBASIC Data Base Sys. .. $ 30.00
885-1109-[37] HDOS Retriever ASM (3 disks) ... $40.00
885-1110 HDOS Autofile (2 disks) $30.00
885-1115-[37] HDOS Navigational Program $20.00
885-8008 Farm Accounting System $45.00
CP/M

885-1219-[37] CP/M Navigational Program $20.00
AMATEUR RADIO

HDOS

885-8016 Morse Code Transceiver Ver 2.0 . $20.00
CP/M

885-1214-[37] CP/M MBASIC Log Book (64k) ... $30.00
885-1234-[37] CP/M Ham Help $20.00
885-1238-[37] CP/M ASCRITY . corienriens $20.00
885-8020-[37] CP/M RF Comp. Alded Dasugn .. $30.00
885-8031-[37] CP/M Morse Code Transceiver ... $20.00
COMMUNICATION

HDOS

885-1122-[37] HDOS MicroNET Connection $ 16.00
CP/M

885-1207-[37] CP/M TERM & HTOC $20.00
885-1224-[37] CP/M MicroNET Connection $ 16.00
885-3003-]37] CP/MZTERM (Z100ModemPkg) $ 20.00
885-5004-37 CPM86 TERMB86 and DSKED, $ 20.00

17
14
18
30
47
32
44
50

31
47
32

47

57
50
55

23
23
23
23
25
30

31

42

23
49
57
a4
57

37

26
37
34
56

885-8005 MAPLE (Modem Appl. Effector) ... $35.00 29
885-8012-[37] CP/M MAPLE (Modem Program) $ 35.00 34
885-8023-37 CP/M 85 MAPLEc.cceeee.... $35.00 45
MISCELLANEOUS

885-0004 HUG Bindercccoccvvcvvivnnricninnnnns. $ 5.75
885-1221-[37] Watzman ROM Source Code/Doc $ 30.00 33
885-4001 REMark Volumes 1to 13 $20.00
885-4002 REMark Volumes 14 to 23 $20.00
885-4003 REMark Volume |l issues 24-35 . $ 20.00

Local HUG
Club News

Ft. Wayne Area HUG
Steven Fensler is interested in starting a Ft. Wayne Area HUG. Please
either write or call Steve at:

6617 Bandon Drive
Ft. Wayne, IN 46815
Phone # (219) 486-3738.

Tulsa HUG

Rt 1, Box 813

Sperry, OK 74073

Christian Kessler is contact person

Tentative meeting day is the 2nd Tuesday at members homes
5 members at present, no dues

LSU HUG

Baton Rouge, LA

LSU H/Z Users’ Group

Dept. of Chemical Engineering

Louisiana State University

Baton Rouge, LA 70803

Danny Reible is contact person and president

Meet 2nd Wednesday at 4:00 pm at Center for Engineering & Busi-
ness Administration

$5.00 dues/yr.

LRH/ZUG

Little Rock HUG is now the LRH/ZUG (Little Rock Heath /Zenith
Users’ Group). Also new address is 113 Dakota Jacksonville, AR
72076. New phone # (501) 988-5273.

Now have 30 members and a 24 hour Bulletin Board (501) 988-
5700.

San Jose HUG
Now only meets the 1st Wednesday each month at 7-8 pm at the
Campbell Heathkit Electronics Center.

Metro Detroit Area HUG
Has a new address:

35681 Hees
Livonia, Ml 48150.

New phone # (313) 427-3905.

885-4004 REMark Vol 4 Issues 36-47 $20.00
885-4500 HUG Software Catalog $§ 9.75
885-4600 Watzman/HUG ROM $45.00 41
8854700 HUG Bulletin Board Handbook $ 5.00 50
885-3015-37 ZDOS SKYVIEWSccoovnnnnne. $20.00 55

NOTE: The [-37] means the product is available in hard sector or
soft sector. Remember, when ordering the soft sectored format,
you must include the “-37" after the part number; e.g. 885-1223-

Y%

New contact person is Neil E. Coffin, who is also Sec., Treas., and
Librarian for the group. They now have 65-70 members and the
president is Tom Livingstone.

Cleveland HUG

New contact person is Kent Currie.

They now have 30 members and the Bulletin Board number is (216)
292-7554 during non-store hours.

DAYHUG

Wright Patterson HUG has changed its name to DAYHUG (Dayton
HUG).

New address:

1670 N. Laddie Ct.

Beaver Creek, OH 45432,

New phone # (513) 426-5014.

New contact person is George Elwood.

They have 160 members and meet 1st Thursday at 4:00 pm for
H8/H9 users and the 3rd Thursday at 4:15 for Z-100 users.

OKIHUG

The new meeting date and place for OKIHUG (Okinawa HUG) is
now the 2nd Friday monthly at the American Royal Office at 7:00
pm.

TRY-STATE HUG
2617 Country Way
Fayetteville, AR 72701
(501) 521-4818

Contact person is Gil Hoellerich
They meet 3rd Saturday at 1 pm at:

Northwest Voc-Tech School
Hwy 265 and Ford Road
Springdale, AR

Club just started and the group is growing!

NHHUG
Paul Eustace has notified us that the new contact person for the North
Houston HUG is Barbara Hemmerling. The address is:

20207 Cotton Glade
Humble, TX 77338

They also have a 24-hour Bulletin Board at (713) 583-1287.

Green Bay HUG
Green Bay area is looking for interested Heath Users' to start a HUG
club. If interested send your name, address, and phone number to:

David A. Ozarowicz
505 Main Street
Wrightstown, WI 54180

%

38

REMark + October * 1984

How To Make Color

Lecture Slides

By Photographing

the CRT Display

Robert . Telepak MD
201 Briarcliff Dr.
San Antonio, TX 78213

Many Heath/Zenith computer users, such as myself, give frequent
lectures that require slide presentations. The following method is a
very convenient way to reliably make color slides by photographing
the computer display.

The only equipment required is the computer, a 35 mm camera with
a through-the-lens metering system, a telephoto lens preferably with
macro capability, and a tripod. Thefirst order of businessis to make a
display on the screen from which the camera’s light meter can be
used to set the proper exposure factors. The following MBASIC
program will generate a screen display that is suitable for such meter
calibration.

10 REM enter graphics mode

20 PRINT CHR$(27); "F"

30 REM set up a FOR-NEXT statement to fill the screen with
graphics characters that fill approximately half of the
surface area

40 FOR N=1 TO 24

50 PRINT "rrrrrrrrrrrrrrrrrrrrerrrrrCCICCCITIIIITITITITT
rrerrrrrrrrrrrrerrrerrrrrrrrrrerrrrrer”

60 NEXT N

TO REM exit graphics mode

80 PRINT CHRS(27);"G"

90 STOP

In the H-89 graphics character set, the letter “'r”’ is a symbol filling in
half of the area of the character in a diagonal manner.

ddddddddddddidd
dddddddddididd
dddddddddddddid

Thisisavery desirable display fortaking an 'average’ light reading by
the camera’s through-the-lens metering system, since half of the area
of each character is filled in (Figure 1).

ASA/ISO 64 color slide film is recommended. An exposure time no
faster than 1/30 sec can be used, and 1 second is recommended.

]
/)

= E:H“\i:‘:ﬁb__
;"‘"“"\
e ~

v

/

.,/
3
// i

Y

N/

&

4

This is sufficiently slow to prevent the raster lines on the CRT display
from being seen. With such a slow shutter speed, use of a tripod is
mandatory.

The camera is focused on the calibration display described above,
and the screen brightness knob on the back of the computer is
adjusted so that at the shutter speed of 1 sec a meter reading of 5.6 is
obtained. A word processor or text editor can then be used to put the
desired text for the slide on the screen. It is then photographed at 5.6
and 1 sec.

Although a ‘regular’ 50-55 mm lens can be used, a telephoto lens is
definitely superior. The picture of the screen display can be taken
from farther away and this prevents distortion of the image at the
edges due to the curved surface of the CRT screen (Figure 2).

Using a green CRT, slides with green printon a black background are
produced (Figure 3). A color display on a RGB monitor could be
photographed in the same way. The slides produced project very
well, even in large auditoriums, and present a professional appear-
ance to the material being presented in the lecture.

REMark = October * 1984

39

Figure 2 Figure 3

About the Author:

Robert J. Telepak is a physician with the rank of LTC in the US Army and is
stationed at Brooke Army Medical Center in San Antonio, TX. He has a BS
and MS in physics, graduated in 1972 with an MD from the University of
Colorado School of Medicine and Nuclear Medicine. Bob’s major use of his
H-89 is for record keeping, word processing (to produce lecture notes for
teachingin the Department of Radiology) and preparing slides for lectures, as
described above. *

Compatible With Most Popular Complilers
MS-FORTRAN pasm Z-BASIC

MS-COBOL ¢ (computer Innovations) MS-Pascal

BERERRER AR R RS RS A AN R AR AN R AN NN NN RN
Supports all Video and Memory Configurations
640 X 480 Interlace
640 X 240 Non-interlace
640 X 240 Non-interlace-Sync
Monochrome, 32K Color or 64k Color Memory
A A2 22222222t ittt ittt i ittt Rttt it s Rttt RE S
Contains forty callable routines which provide a wide variety of high speed graphics capabilities which are based on the
TEKTRONIX and CORE graphics standards. Among the capabilities are:
Plot, Draw, Circle, Arc, Move, Window, View, Newpage, Foreground and Background Color, Line Col-
or, Absolute and Relative Vectors, Seventeen Standard Line Styles, User Definable Line Styles, Fast
Polar to Rectangular Conversion, Three Area Fill Routines, Standard and User Defined Fonts in Eight
Character Sizes and Four Writing Directions, ASCIl and Greek Character Sets, Provides Special Draw-
ing Modes to Support "Rubber Band” and Moving Marker or Cursor Applications.

Provides supplemental support for Random Number Generation, Pause, Direct Access fo the Console and Auxiliary Ports
and Runtime Error Condition Reporting.

Full user manual with table of contents and cross-reference index; all above-mentioned languages are included on 54"

disk.

No restrictions or royalities on use of routines linked with your programs.

At sals upport o hepe coms o Z-GRAPH-100

ORLEANS
GENERAL
DAaTA
SERVICES

Ordering Information

40 REMark = October * 1984

The Computers Are Coming . . .

Are Here

“When are you going on vacation?’’ The secretaries who work in
our school office asked me this question repeatedly. They were
inquiring so that they would know when the "“boss” wouldn’t be
around. What they really wanted to know was when they could
finally get at the new computer housed in their office.

For almost three months they had seen me slowly learning how to get
the computer to work for me. They saw me working, playing, being
happy or discouraged -- then hitting the books (manuals) for the
umpteenth time.

Before leaving for my vacation, | had formatted disks and set out a
short “how to’ for them to get started with the word processing
program and the printer. They had seen that the computer wasn't
easily damaged.

Two weeks later, | was greeted with a pile of printed computer paper
and some very enthusiastic secretaries. They told me that they had
“fun” while learning to use the word processor. During this last
semester, we almost had to have a sign up sheet for appointments to
use the computer.

Where did all this enthusiasm come from? How are computers
changing the faculty, students and staff of this school? What more
can we do with these computers? Some background information
may help in part to answer these questions.

Several years ago it became obvious that the future of education
would be dominated by the increasing use of computers. As an
educational administrator, | felt that before | could ask the faculty
and staff to accept computers into the school, | had to become
thoroughly at ease with them myself.

With that in mind, | proceeded to take several courses; first a course
in “Computers for Managers,” then ““Computers in Education,” and
finally a basic “BASIC" course. All these were given as short continu-
ing education offerings at our local university.

The first course was by far the most informative for my purposes. The
importance of getting the people who would be most involved in the
operations of the computers in on the ground floor was stressed. Why
we needed computers and what they could do for us were the basic
questions.

As the head of this school, | have always asked for and gotten ideas,
suggestions, and some detailed outlines on all facets of school ad-
ministration, teaching, and functioning. So it was with the prospect
of computers being introduced into this school.

Everyone was asked to submit a listing of what they would like a
computer to do for them in their school job. The faculty addressed
the areas of Computer Assisted Instruction (CAl), grade handling,

Louise B. Guest
S.R. 1, Box 85
Lampe, MO 65681

statistics, and report writing. The recruitment counselor wanted an
easier way to keep track of the potential applicant and those newly
admitted, The registrar wanted a way to know who was in the school,
what classes they were taking, if they were receiving financial aid,
how much they had paid, and if they needed a bill.

This left administration with wanting to schedule classroom usage in
a simpler method, while having a quick way to determine who was
in which class. There was also the very real need for budget control
and planning. The area of inventory was also addressed. All in all --
the usual needs of an educational institution.

The next problem was to shop for the “right”” computer for us. In
order to make a knowledgeable decision on what type of computer
and its capabilities were suited to our school, | had learned the jargon
and understood the potentials of computers.

| now felt comfortable enough to visit the many computer sales
representatives. | could discuss with each of them my four page
outline of what we wanted the computer to do in and for our school.
This outline was a compilation of all the previously mentioned input
from faculty and staff.

Along the way, | did find out about several educational administra-
tion packaged programs -- especially one that would do everything
on my four pages and more, but the cost was prohibitive for our size
school.

What did we wind up with? The school now has two Zenith 110’s
(color) in our audiovisual learning center and one Zenith 120 (all-
in-one) in our office. The Daisywriter printer and modem are also in
the office.

The programs we have now and are using include:

For Z-DOS (MS-DOS):

Multiplan (MicroSoft) for student financial aid and the school
budget

For CP/M-85:

Magic Wand (Peachtree Software, Inc.) for form letters and bills

Personnal Pearl (Pearlsoft) a data management program -- just
getting started with this

PIEZ (Software Toolworks) -- a text writer. This article was written
using this program.

Quizzer (Interactive Micro Systems) -- to set up self testing mod-
ules.

Programs already written by the faculty include a grade reporting
program, a spelling verifier, an annotated calendar, and a manage-
ment decision aid. Most of these have been modifications, combina-
tions, and adaptations of programs found in books and magazines.

REMark * October = 1984

How have the computers changed the behavior expectations of
those in this school? More and more of the faculty are taking their
own continuing education courses to learn about computers. Many
have taken advantage of sales and now own a personal computer.
Most importantly, they are not afraid to use the school computers,
especially entering quiz grades and getting the sorted printout to
post.

The students expect to see exam grades posted in less than two hours
after finishing a test. In fact, they start to congregate near the approp-
riate bulletin board after one hour and are usually not disappointed.
They are starting to use the text editor to write their term papers. The
need for another printer has become evident,

The secretaries appreciate the ability to personalize letters without
having to retype all of the letter.

As an educator, what have | learned and what have | taught? The
oldest method of teaching -- by example -- has worked very well in
the introduction of computers into the functioning of this school. No
one would willingly go back to doing everything by hand and being
bogged down with paper shuffling.

Each day, we all learn a little more, understand the capabilities
better, and enlarge our list of additions needed to make the system
even better.

We are on the way to becoming a computer managed school.

=3

ZW AR!

Tired of trying to get your latest Pascal compiler to work? Your
spreadsheet won't compute? Sick of syntax errors in line
46587 It's time to take a break and indulge your fantasies of
global domination with ZWAR.

ZWAR is a two player strategy game of world conquest. The
screen displays a map of the world and the Soviet and
American cities. You must decide what mix of the nine
available weapons systems you will build to outwit your
enemy. You can destroy his cities with ICBM's, or attempt to
capture them with an invasion, thus gaining their production
facilities for your own use. Each weapon has its strength: car-
riers and destroyers for sea superiority, ABM's for defense
against missiles, Jets for quick response, satellites for spying
on enemy activity. The possible strategies are nearly endless.

So if you're getting tired of humdrum computing, grab a friend
and try ZWAR. It's your chance to make history.

ZWAR, $19.95 + $1.50 shipping. For H8-H19, H/Z89 or HIZ100
systems (color graphics on the Z100), 56k, and HDOS, CPIM, or
CP/M-85. Specify hard or soft sector disk. Free catalog
available.

APOGEE SOFTWARE

Box 15124

Savannah, GA 31416 (912) 925-3765

DM-1 DUAL BOARD MODIFICATION KIT

logical drive letter.
CDR BIOS by Livingston Logic Labs

CDR DVD by Livingston Logic Labs.

Shugart Slimline 8" double sided drives
Contact:

Controlled Data Recording Systems Inc.

ANNOUNCING THE FDC-H8

DOUBLE DENSITY 8” AND 5.25” CONTROLLER FOR THE H8 COMPUTER
Has all of the capabilities of our popular FDC-880H controller, with the added features of;
« Direct memory access (DMA) data transfer.
« Hard sectored controller (H17) incorporated on the board.
Runs with the standard 8080 CPU card and with Z80 CPU upgrades.

« Accesses both hard sectored disk formats and soft sectored disk formats through the same
drives attatched to the FDC-H8 without hardware additions.

NEW PRODUCTS FOR THE FDC-880H

AI{ows fOf both .the FDC-880H and the H88-4 controller cards to interface with the same 5.25"
drives. Drives will run as both hard sectored format and soft sectoredformat depending upon the

Enhanced version of Heath/Zenith CP/M 2.203 BIOS with ZCPR. Supports all Heath/Zenith disk
formats through the FDC-880H and the H17 controllers.

HDOS driver for running double density HDOS through the FDC-880H
Shugart Slimline 525" 40 track double sided drives

C.D.R. Systems Inc.
) 7210 Clairemont Mesa Bivd, San Diego CA92111
5-20 day delivery-pay by check C.0.D,, Visa, or M/C Telephone: (619) 560-1272

Price $495.00

$29.95

$60.00

$40.00

$275.00
$525.00

42

REMark * October * 1984

NEW Z-DOS WORDKEY™

SIMPLIFIES WORDSTAR™

Introducing WordKey. WordKey replaces ALL of WordStar's
control-key commands with much simpler and faster
keypad and function-key commands. Each function and
keypad of your H/Z-100 is used two or three times over to
define more than 90 key combinations. You'll never need to
hold down the control key again! Look at these features:
® Keys are logically grouped so that the most often-used com-
mands are single keystrokes. Move around the screen quickly
and easily. Lesser used commands are two separale keystrokes
that can be enlered with one hand
® Full onscreen help is always instanlly available, including two
dilferent key diagrams and a separate explanation of each key's
function. Just press the HELP key
® Blank ruler line .Block cursor and key-click onloft Detailed
User's Manual and printed keyboard diagrams...And much more
® Use with either WordStar version 3.21 or 3.30

I_Please send me:
Z2-DOS WordKey: ______ copies @ $49.95 §
Special: C.ltoh Prowriler graphics screen
I dump program copies @ $19.95 §
Calil. residents please add 6% tax §

Tatal Enclosed (includes matling) $

Name
| Address
| DelSoft
Gary Deley, 564 Calle Anzuelo, Santa Barbara, CA 93111

(B05) 967-9566 eves and weekends AEM

— — — — — — — —

Ci L‘i Sta r.ei ziis

HOW NUCH
FREE SOFTWARE
COULD YOU USE?

FIND QUT WITH OUR GIANT PUBLIC DOMAIN DIRECTORY

@ SUPPLIED ON DISK FOR EASY COMPUTER ACCESS
@ MORE THAN 4,500 ENTRIES
@ SUBJECT AREAS IMCLUDE:

ASTRONOMY, AVIATION, BUSINESS, EDUCATION, ENGINEERING,
GAMES, GRAPHICS, HAM RADIO, MUSIC, PROGRAMMING, TEXT
EDITING, VOICE SYNTHESIS, UTILITIES AND MUCH MORE,

Yes! I need to know what free software is available. Send
me the public demain

directory on the Heath o3 amn o 2 sory ox | pousi
cP/M 5% format checked Dﬁ&,?ﬁ“ & jiﬁf%ﬁ“ " DI&‘?SE N

e, A T
mEmE HEADWARE oS 1o, mist oy

DEEE 2855 AKRON STREET donsstic. #4 foral
gn per
BB EAST POINT GA. 30344 order for SeH. Enclose

your check or M.0. with
ERER your order. Sorry, no

charge or phone orders.
Hame

*CP/M Rag. TM Digital
Research Corp.

Z-BASIC PATCH

Pat Swayne
Software Engineer

In this article, we present a patch to Z-BASIC revision 1.1. This
version of Z-BASIC does not accept the BEEP command, with the
result that many HUG game programs do not run under it. The patch
can be made with the DEBUG program supplied with Z-DOS. Here
are the commands you need to enter to DEBUG to make the patch to
ZBASIC 1.1 dated 11-May-84.

~NZBASIC.COM

-L

-E227

xxxx:0227 D6.69
xxxx:0228 92.7C
-N

Writing B500 bytes
50,

Here is the patch for ZBASIC 1.1 dated 5-Oct-84.

~NZBASIC.COM

-L

-E227

xxxx:0227 4A.EE

xxxx:0228 8F.T7D

~W

Writing B700 bytes

(hit SPACE bar here, not RETURN)

(hit SPACE bar)

This example assumes that ZBASIC.COM is on your default drive.
The characters ““xxxx’’ refer to a number which will not be the same
for every application. If you are using the Z-DOS 1.x version of
DEBUG, the prompt character will be “>" instead of -'* as shown. If
the old data bytes at the patch address are not D6 and 92, or 4A and
8F as shown, do not make the patch. You have probably loaded the
wrong version of Z-BASIC. *i

Yoo Gorma Sae ,
HOG's FrooveTs.,

REMark * October * 1984

43

"I,)ISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK DRIVES DISK l.')l!l\.fESU

w =
2 £
2 3
- <
° ZPRICE BREAKTHROUGH
e =4
z 2
“ 5
= o & -
: Super Sale on New Disk Drives i
& New Low
@ Startlng at $169.00! Price =]
: L3 m
E Tandon — Siemens — Remex — MPI — Teac — Shugart — Tabor 3
b 40 or 80 Tracks — Single or Dual Head — New 32" Drivette ™ §
a2 Our Disk Drives are Capable of Single and Dual Density Operation P
The NEWEST Technology Capable of Operating on Most Popular Computers
@ Drive a Hard Bargain!! ™ For your TRS/80, Color Computer, IBM, Apple, Franklin, g
2 Max/80, 5 M.B.-20 M.B. Complete Systems...... from $999.95 =
. . . NEW =]
e Diskette Breakthrough — 10 Pack in Library Case — $18:95 ovruc 2
7] m
a8 PLEASE CALL FOR OUR MOST CURRENT PRICE REDUCTIONS. @«
@ TOLL FREE ORDERING GENERAL AND TECHNICAL ¢
7]
2 1-800-343-8841 1-617-872-9090 >
: Disk Drives (0123) TRS/80-IBM-Apple-TI-Franklin-Max/80-LNW................ - -
7] Model 1/111/1V Upgrade (Disk Drives - MemoOry). ciiviiiiiiinieinieineannnnn < CALL 5
Q Printers—Daisywheel/ Dot MatriX.ttt i et e e it naneennens -« b
@ Percom Double Density Controller (ModelI).t ininennnnn. <« TOLL
g Color Computer Printer IREPPACES .. o vis sis ve viosaman v o5 swawmans & vesieise e o - FREE g
] Disk Drive Operating SyStemSo vttt et e ettt e e e e = ~
g Repair Services Now Offered—FAST Turn-a-Round.............. - FOR 5
@ Apple/Franklin Compatible Add-On Drives with Case& Cable.................... -« -
Q DisKettes iN LiDTary Cases. . .. v v vttt et e et e e e e e e e e e e e e et <« NEW @
- DISK DRIVE CASES AND POWER SUPPLIES.oitiiii ittt iitnnnanannns -«
i Printer Buffers 8K t0 512K.o.ouivinineianenaneninennnns starting at $143.95 PRICES 8
= Holmes Model I/III Speed-upMod.ccoiviriinennnnnn. starting at $90.00 =
: Cables—Printer/Disk DEAVE . . ¢« oo i s st niis v6 siewisls oo e s/ais s starting at $16.00 g
: . <
2 Warranty on Disk Drives — 1 Full Year Parts and Labor @
8 SOFTWARE SUPPORT, INC. o
= 271 Worcester Road, Framingham, MA 01701 (617) 872-9090 Telex-383425 ~
=] Hours: Mon. thru Fri. 9:30 am to 5:30 (E.S.T.) Sat. 10 am to 4:30 pm i g g
X DEALER INQUIRIES INVITED. Service! Service! -
E TERMS: CANADA All in stock products are shipped "
M.C./Visa/Amex and personal MICRO R.G.S. INC. w”hf"' 4 Roios o) ""’f""" 4 .
checks accepted at no extra charge. 751, CARRE VICTORIA, SUITE 403 Repulr/Wasranty suryice Is pecformed
® C.0.D., please add $3.00. MONTREAL, QUEBEC, CANADA, H2Y 2J3' within 24 hours of receipt unless
g Shipping: Please call for amount. Reg].llar Tel. (514) 287-1563 ;éf::g‘:fnzoiegloP:fd{::e{)sfc)(;;g;D.’ B
E g:?:crsessz:?:g:lteofg; atzgp:graphical BLE Canadian Toll Free 800-361-5155 and D&B corporate P, O:s accepted. :
3 TRS/80 Registered Trademark Tandy Corp. Apple Registered Trademark Apple Computer Corp E
@ IBM-PC Registered IBM Corp. Franklin Registered Trademark Franklin Corp. Max/80 Registered Trademark Lobo Int, S
E LDOS Reg. Logical System Inc. Dosplus - Micro Systems Software Newdos/80 - Apparat Inc, g

S3AIUA NSIA S3AINA NSIA S3IAINA NSIA S3IAINA NSIA SIAINA XNSIA S3IAIHA NSIA S3AINA X¥SIa

Z80 SPEEDFIX for H8 /H89

Copyright © 1984
by Frederick F. Freeland, Jr.
Btry C, 3d BN, 7th ADA
APO NY, NY 09139

Being stationed in Germany has it’s advantages, | suppose, but one
of the greatest disadvantages that | can think of, is being away from
what my wife describes as my “computer buddies”. | really miss that
warm tingly feeling that comes from a bunch of HUGGIES getting
together at a local HUG meeting or a HUGCON. Despite this
disadvantage, my computer and | manage to keep busy. After per-
forming a number of modifications to my H8 system, modifying a
READACTRON IBM Selectric for use with an H8 as a printer, trying
to assemble an EPROM programmer, and teaching night classes in
data processing, | finally found a break in my computer activities. |
discovered that | had some spare time on my hands. Frankly, | was
lost. It had been so long since | had seen any truly spare time that |
didn’t know what to do. | began having withdrawal symptoms and
found myself gazing over at the computer, which sits on one wall in
the living room of my government apartment. | don’t know whether |
was trying to justify its existence or was just itching to get on the old
keyboard. There were probably a million things that | could have
done, and probably should have done, but didn’t. One thing that |
did do, was to catch up on some long overdue correspondence to
some of the aforementioned “computer buddies’. With that done, |
once again had some time to play with. The result of this time is the
subject of this article. | simply decided that it was high time that | put
something back into the Heath User's community that | have en-
joyed so much for the last 6+ years.

One of the modifications that | made to my H8 system was the 3Mhz
clock change described by Pat Swayne in Remark #38. Although he
accurately described that feeling that | got when | ran a nice graphics
game at a higher baud rate and CPU speed, | just could not bring
myself to permanently modify my HDOS or CP/M systems. | like to
retain maximum compatibility with anyone whose path | might
cross. Permanently modifying operating systems just doesn’t provide
that flexibility. At last, | struck upon something useful to write. |
would write some software that would allow both the H8 and the
H89 user to use the small software switching routines described by

Pat in his articles in REMark. And so the SPEEDFIX program was
born.

The purpose of the SPEEDFIX program in all of its conditional as-
semblies is to provide a user with the ability to switch between two
different CPU speeds under software control. This software is predi-
cated upon the fact that the user has implemented one of the
hardware modifications described by Pat Swayne, of the Heath
User's Group in their monthly magazine REMark. Issue number 34
describes the appropriate modification for the H89/90 computers,
and issue number 38 describes the modifications for the H8 with an
HA8-6 Z80 CPU card.

Now let's describe exactly how the program works. It consists of a
number of modules, each of which has a distinct purpose in the
program.

The first three lines of actual code in the program define XTEXTs that
will be called from the assembly process. These XTEXTs contain

definitions that are standardized in HDOS 2.0 and are provided on
the 'Software Tools’ disk that comes with HDOS 2.0. The user of the
assembler should make sure that these XTEXTs are on the disk that
contains this source code file. There are other places that they can
be, butfor simplicity, that is where the assembler looks for them first.

Now comes some ASCII definitions, which will be required for our
assembly. They are pretty straightforward and require no further
explanation.

Next we come to some basic truths...literally. In order to perform
conditional assembly of any program with the HDOS assembler, we
must have a means of telling the assembler whether or not we wish to
assemble the various parts of our program. This is done by establish-
ing what is TRUE and what is FALSE. The ‘IF" pseudo operator of the
HDOS assembler will assemble statements following an ‘IF’ state-
ment if the associated argument EQUates to 0. Any other number,
either negative or positive, will cause the code to not be assembled.
By using this logic, we can make the label, TRUE, EQUate to 0 and
the code following the ‘IF" statement will be assembled. If it is
EQUated to some other number, in this case 377 octal, alternate
lines defined by the ELSE pseudo operator will be assembled. This is
how we can use this program for two different environments, such as
the application here.

The two environments, of course, are the H8 operating at 2 and 3
Mhz, and the H89 operating at 2 and 4 Mhz. Another difference in
the environment is that the general purpose port (362Q) isused in a
slightly different manner for each.

The two lines of code that follow the TRUE and FALSE definitions are
the actual conditional assembly switches. By defining these labels
appropriately as either TRUE or FALSE, we cause various parts of the
code that follows to be assembled or skipped. The switch labels are
HB89 and PROLOG.

The program as it is listed is conditioned to assemble as an .ABS (or
machine executable) program for the H8. This will allow switching
of the CPU speed between 2 Mhz and 3 Mhz. Changing the code for

an HB89 is a very simple matter and can be done with virtually any
text editor program.

By changing the H89 EQU ate to TRUE, the program will, of course,
assemble for an H89. One of the differences between the two ver-
sions is the mask used for the general purpose port. This is only a
matter of a single different bit doing the controlling. Another differ-
ence from one computer to the other is the message that is provided
to the user. The program will assemble so that there is absolutely no
question in your mind about which version you are running. The H8
version states in the ‘sign on’ that it is for the H8 and the text describes
changing CPU speeds between 2 Mhz and 3 Mhz. The H89 version

signs on for an H89 and indicates speed changing between speeds of
2 Mhz and 4 Mhz.

Once the decision has been made as to what machine (H8 or H89)

REMark * October + 1984

45

you are going to assemble the program for, another option switch still
remains. Changing the PROLOG EQUate to TRUE, will result in a
program which can execute at bootup and simply switch the CPU to
the higher CPU speed. The resultant object program can be renamed
PROLOGUE.SYS and placed on a bootable disk. An undocumented,
but well known HDOS feature, a prologue is a program which the
HDOS operating system looks for at boot time. If a file called PRO-
LOGUE.SYS is found on the boot disk, it will be loaded and exe-
cuted. The result of this is that our program will execute at bootup
and switch the CPU to the higher CPU speed without human inter-
vention. The actual difference in the two different assemblies is
simple. In the PROLOGUE version, there is no explanatory text
whatsoever; the program simply signs on indicating what it is and
what computer type it is for and checks the condition of the CPU
speed. It will only change the speed if it is running at the low speed. If
for any reason it is already running at the faster clock rate, as can
occur if you boot from H37 drives which are non-clock dependent,
the program will simply advise you of that fact.

Following the conditional assembly switches is the control port
address EQUate. This is port 362Q, which is also known as the
general purpose port. Another constant pertaining to the general
purpose port needs to be defined. This constant is the address of the
control byte at the label CTLBYT. The split octal address of this
location is as shown. This byte contains the attributes of the general
purpose port, and is the location where we store the information
pertaining to the CPU speed for ready reference by the program.

After that, is the first of the conditional assembly code. The lines
between the IF and the ELSE are assembled for the H89 ONLY if the
H89 label has been defined as TRUE. Otherwise, the code between
ELSE and ENDIF is assembled. The code in this area are the EQUates
which are unique to the type of computer that the program is being
assembled for. Because the H89 implementation uses a different bit
of the general purpose port from the H8 to control the CPU speed, the
bit masks defined by Z80.CLK are different. The two remaining
differences relate to the messages that are presented in the program.
The first label is HSPD, which EQUates to an ASClI character repre-
senting either a “3"" or “4,” depending upon the assembly. This
simply insures that sign on message informs the user of the proper
high speed for their computer, i.e., either 3 Mhz or4 Mhz. The HTYP
label EQUates to another ASCII character representing either a space
(“")ora"9". Depending upon the implementation, either the space
orthe 9" is appended to “H8" to advise the user of which computer
the program was assembled for.

Finally, we get to the mainline code. The program is not written in the
most memory efficient manner possible, but it is written in a struc-
tured manner, which makes it very easy to understand. The structure
of the mainline code is such that each task to be performed in the
program is performed by a subroutine, which is called from the

mainline code. These subroutines are located following the mainline
code.

We will now proceed through each task to be performed by the
program and discuss its associated subroutine as we go.

The first task to be performed is the “’sign on’. The purpose of this
part of the code is to advise the user of the title and version of the
program. Additionally, a brief statement is made concerning the
purpose of the program and its compatibility. The SIGNON sub-
routine is self-explanatory. Notice the IF..ELSE conditional assembly
pseudo operators in there. The purpose of these is to eliminate all,
but the title and version line, from the “sign on” if the user has
decided to assemble the program as a prologue.

The next task to be performed is one that | just threw in to test for a

Z80. It does not differentiate between an H8 and H89, it simply
insures that an H8 has aZ80 CPU installed. If it does not, the program
will issue an error message and exit. The information at the heading
of the Z80TST routine will explain the operation of the test. There is
no way for the program to actually determine if the appropriate
modifications have been made. However, if they have not, the only
thing that will be affected is that the speed will notchange. There will
be noill effects from running this program on an unmodified system.

Following the Z80 test, we want to change the terminal to the single
character mode, so that we can get a response from the user at the
appropriate time. This task is performed by the MODE routine.
Information about the various modes can be found in the HDOS
manual.

The next thing we want to do is to EXPLAIN to the user exactly what
CPU speed the computer is in, and what his options are concerning
that speed. The EXPLAIN subroutine evaluates the current condition
of the CPU by examining the contents of the control byte. Once this
has been done, the program advises the user of the current CPU
speed and asks the user if he wishes to change the CPU speed. This
routine solicits a response from the user regarding his desires. All
responses are mapped to upper case and the default answer to any
question is “YES.” Once the user has made a selection, he is notified
of the action resulting from that selection. If the user does not desire
to change the CPU speed, the routine issues a message indicating
that the CPU speed is unchanged, and the program then exits via the
EXIT subroutine. It should be noted that if the PROLOG label is
TRUE, only the code between the two IF and ELSE pseudos will be
assembled. Conversely, if the program is not assembled as a pro-
logue, the lines between the two ELSE and ENDIF pseudos will be
assembled.

Following the EXPLAIN subroutine, we execute a routine called
VERSCHK, which is used to insure that we are using a valid version of
HDOS. To my knowledge, versions prior to HDOS 2.0 do not
support the general purpose port. | may well be in error on this point,
so if you are running HDOS 1.5 or 1.6 and everything has been
working OK for you with an extended configuration, this program
will work on your system. You can simply delete this subroutine and
the call in the mainline code to it.

Having verified the proper version of HDOS, it is now time to get
down to the business of toggling the condition of the CPU clock
speed, provided of course, that the user has made that selection. The
TOGGLE routine first disables the interrupts before making any
changes. This was done to insure that nothing else was going to
interfere with the CPU when the actual change was made. After
disabling the interrupts the Z80.CLK byte, that we defined at the

beginning of our listing, is exclusive or'd with the current contents of
the CTLBYT. The result of this is that the bit will be changed to its
opposite state, regardless of its previous condition. Once that has
been done, it will be restored at the CTLBYT location for future
reference and sent out the general purpose port to affect the actual
change. Now that we have passed the critical stage, the interrupts
can again be enabled. Once again we want to make a check on the
CPU speed. This is done by AND’ing the Z80.CLK mask with the
current contents. If a zero flag is set, then the CPU is operating at its
low speed; if it is not zero, then it is operating at its high speed. Upon
making this determination, the routine issues an appropriate mes-
sage to the user indicating the current CPU operating speed.

At this point, there is only one final thing to do. That is done by the
EXIT routine immediately following the mainline code. The EXIT

routine clears out the type-ahead buffer, and then performs a normal
HDOS exit.

46

REMark * October « 1984

After keying in this code, the natural inclination, of course, is to
assemble and run the program. In order to do this, one must assure
that the two XTEXTs, that were mentioned earlier, are present. That
done, you can simply type the following to invoke the HDOS assem-
bler.

ASM SYn:SPEEDFIX,TT:=SYn:SPEEDFIX

The first ‘n’ indicates the drive number where you wish to put the
object program, and the second ‘n” indicates the drive number where
the source code and XTEXTs reside. The TT: device is shown as the
listing device, although this can be left out if desired. The comma
preceding it cannot, however.

The accompanying listing for CP/M is not much different from the
HDOS version previously presented. It will provide precisely the
same function for the CP/M environment. There are, of course, some
minor differences which we will discuss.

The most obvious difference is that the CP/M version has no refer-
ences to any XTEXT’s, as in the HDOS version. This is because the
CP/M version has no overlays, nor does it have the advantage of
being able to use ROM I /O subroutines. The ROM subroutines can
be used in HDOS because they are in ROM below the 8K mark,
which begins the HDOS operating system and, therefore, do not
conflict with the useable memory space in HDOS. CP/M 2.xx
begins at 0000H and, therefore, must be completely self-contained.
The system parameters, found in the locations between 0000H and
0100H of the CP/M environment, provide jump vectors and entry
points into BDOS and BIOS functions, which are the functional
equivalent of the HDOS SCALLs. Only four EQUates are shown in
the BDOS definition area. The BASE label is simply the starting
address of CP/M. Some people run what is known as alternate
CP/M, which has a starting address that is the same as the HDOS
operating system, These people may change this EQUate as needed.
The CONIN and CONOUT labels are self explanatory. The BDOS
EQUate is the vector for entry into the BDOS.

Following the BDOS definitions are some of the same ASCII defini-
tions that were found in the HDOS version.

After that comes the TRUE and FALSE definitions, that we found in
the HDOS version to enable us to perform conditional assembly of
our program. The difference here is, the logic used by CP/M is such
thata TRUE is not 0 as it was in HDOS, This comes about because the
CP/M assembler does not allow IF...ELSE conditional assembly. In
order to minimize confusion between the two versions, | used IF...
and IF NOT..., in lieu of the HDOS IF...ELSE convention. The result is
virtually the same, and the switches retain the same values for the
various conditional assemblies.

The conditional assembly switches are the same as found in HDOS.
It should be noted that CP/M does not have a means of implement-
ing a prologue, per se. By configuring your CP/M system to recog-
nize a command line at either warm or cold boot, however, you can
cause CP/M to execute the prologue version of this assembly, with
the same result that you would have in HDOS. Again, versions for
both H8 and H89 are conditionally provided.

The remainder of the program is straightforward, and pretty much as
described for the HDOS version. There is no routine to check version
as in the HDOS because it is not needed, nor is there a MODE
subroutine, since CP/M provides this character input environment
without modification of the console | /O mode.

Another minor difference, is the fact that the program does not
actually OUT the information in the control byte to the general
purpose port. CP/M takes care of this function at everv clock inter-
rupt eliminating the need for the program to do so.

The final remaining difference, is the addition of the TYPTX routine.
This routine is functionally the same as the $TYPTX ROM call in
HDOS and serves the same purpose; i.e. to type on the console
screen the text which immediately follows the call, until a character
with bit 8 high is found.

In order to actually implement this program under CP/M, one must
assemble it with the assembler provided on the CP/M 2.2x distribu-
tion disk. If you place the program source code file and the assembler
on drive A:, the program can be assembled using the following
command syntax:

ASM SPEEDFIX.AAZ

This will cause the generation of afile called SPEEDFIX.HEX. Use the
following command to generate a .COM file from this hex file.

LOAD SPEEDFIX

Of course, in order to do this, LOAD.COM must also be present on
disk A: After a brief period of time, your program, with the name of
SPEEDFIX.COM, should be ready to run.

I have found these programs to be useful to me on a day-to-day basis,
and | hope that they are of some use to the many HUGGIEs who still
have H8s and H89s. | further hope that it has been somewhat
educational. | will be more than happy to answer any questions
about it.

=)
©Q
o
Sy
=)
a
L
£
AN
5 FREL
‘T Iﬂgéhﬁ
9] ’N:::j-:'; 8
04.
i g o
- Py] g
v
EoO
O% 0-'4-‘-: i o
o o o L
Sy 5833k g =
L
o = aw -
g ok & »am 2 %
AT TS A HBp @
" =
o > Pwoe -
> 5 ©omT ®MW o “ oD
= ¢ B E O W o &~
s Q@ - n — @ +
Ow A T OB
bl EE-CN O C Mo
bl o 0T ®.d nmEM==
+ o o - n
o u 4 8 o =
v o n E s
- ©® N
2L Lgfs E
-l +
Ng 8887,
=)l My o0 3 2
w - LofRaP a
— O nuwgu a
l:E m som o
o o - n
’_m Pl - 0 o E
= Hzﬂ_‘:g 5] 3 w0
2
a im0 ED El @ |
o B -]] - I
LR §% @ ooooz
| 2 ga» @> > EOBQT 0
I T £ 2 BR338 S
G2up2 g ooz o
U sYE85 0 i
) (=9 2] = - - -1
= k= 0oSga 35 B ooooo &
W oo EPERY 22 0 OO o
B Ed o ¥ e o HEEBRE QO
]
- - djo =2
® ®x * & ® ¥ e~ - o~ o~ — mggéﬁ :

REMark * October * 1984

47

" ZHN 2 1® 3utyiwdedo ATjuetano sT me}sds eylL, "IN ga
XLdALS TIVD
asia
Jeje] JoJ UOT}ESTJTI0U BAReT] irct.|
D0704d Ehd

- nva TdXa
Loara
Chaliic]
11Xe 0S5 'pejloge uoTIouUNny LIX™ dHir
"INE "IN ga
(ZHW ,'adSH’, 3e Butjesedo 1738 ST welshs eyl "IN 4a
XIdALS TIVO
Zd
sef J1 eeg R Id0
Hsd d0d
3T pues LNoJs- TIVOS
PUITMEU j}JOSuUl IN‘Y IAR
MSd HSNd
Zd
osTe 'sef ST jInejeq N IdD
eseo—Jeddn eoxoJ ‘f3taed drais DLET INV
2= ar
J9}108IBYD B 189 NIOS® TIVOS
peeye-ediy eyj Jes() o0o¥Td” TIVIS
TINN+. gd
v & <A> (N/A) ZHN 2 3% unJ 03 eXTI[NoA pInoM, "IN'7IN ga
"ZHW ,'0dSH’' . 3% Butjwasedo L1juelano s7 wme}shs oYL, ‘"IN < [af
X1dALS TIVD
as13
op TTITA 3Txe erdurs LIX3 dir
TINE "IN ga
\ZHW , ‘0dSH’, 1® Bujivaedo sT wme3}sAs eulL, ‘"IN ga
XLdALS TIVD
D0710dd 41
ZHN 2 1B ST ¥901) TdX3 r
peeds ey3 3}o8y) W10 ' 08Z INV
81fq [o1ju00 ey} 3189 LAETILD val

» noa NIVidxd

-

erqeITEA® suoTido ey} pue me}shs - -

Y3l JO SN1EB}E jusaano eyy KJriuepl -

-

NIVIdX3E un
LIy
TSNOD* TIVIS
¥HD 11820 IAN
HHD 11508 IAN
spom J830BIBYD 03 eBuvy) aniso 1I'v IAN

. noa HA0N g

8711} weadold eyl jutdd

NONDIS

Loara

LIX3" TIVOS

3IXe TewmJoN v VX

Je3yng peeye—edi) Jweld 00¥TD° TIVDS
» nba

SOQH 03 ATTemlou 3T1Xe ueyl
‘ieJjnq peeye-adA} ey} jno Jeald

LIXE

93BJ }OOTO meu 8y} 03 0BZ oU} UOITAS 19004 TIVO
SOQH Jo uotsdea Teder ® AJTJEA HHOSY3AA TIVD
Butop oJ,em jeYM 188N [I8L NIV1dX3 TIVD

epou J9}0BJEYD 03 @T0SuU0D eyj eBueyy clefo])] TIVD
eJeY} IN0 OBZ ® 5,080} 3IBU} AJTJIep 1S1082Z TIVO
Butpeey weiBoxd eyl jutad NONDIS TIVO

. nda

YaIyIsn 240

eeay meJloig

AIANT

e3essem gH J0J , , IIOSY bovo nba
seoBessew JoJ ,g, IIOSY [} 5Ta] nda

9-8VH YiTa 8H JOJ ¥SBU Yoj}Tag 400010000 nda
3s71a

eB3essem gBH JOJ .6, IIJSY bILO nova
sedesseu J10J ¥, IIOSY droo nda
06/68—Z/H 10J }E®W YOI TS €00T00000 nva

68H 41

A1quessy Butinp esn J0J SeNTeA [BUOT}TIPUO)
SNOSUBRTTOOSTH PuU® ¥SBH 3Td 3d4od esodind [eieusy

Loara
uotjeo0T ©34q T04}uU0) ¥9900%0 nda
131o0d ssodind Teisuen bzog nda

sseJppy 91Ag T0J3U0) PUBR }JOd ToJ3uU0)

nba
nda

asvd
asvd

68H J0J ajquesse 0} JT "INHL
SAS ANDOT0Md Se oTquess® 031 JT ‘ANML

S0YD} TMS ATquessy T[eucijIpuoc)

bLLE nba
o nda

-

LA 2]

LIX3

. * & 3 ¥

X4da3ads

dALH

A0 08Z

dALH

adsH
A10° 082

-a

LAETILD
Ly0d

-

007084
-

asTvd
anyL

REMark * October + 1984

48

TINE "IN

,"ZHW 2 3® 3uriwiedo mou ST me}sAs eylL, ‘"IN

MOU ZHN ¥ J0 € }® o1 ,90a JT 89S
**'gETe U0 }o®Q We, uang

£3110380d 10 3T pdooey

11 813303 puy

#jed HooTo juesead sy} 3189
AiTTT9RTITed JoJ sjdniliejuyl eTqesSTd

7734° \SOOH Jo UOTISI8A

0'z ueyi Jejwedd JT Hoeuyd
0'7 SOQH su®em Jollm
Tvos Buisn Axynbuy eyeln

X1dALS
1370904
¥10° 082

Jyod
LAETLD
¥10°08Z
LAGTLO

818 HOOTOD

ga
da

ZNP
INY

13
1no
VIS
T¥X
Va1

10
noa

seu oy}

03 YojTME 031 0OBZ eyl TIel

1IXd

INZ 1IN

peiloddnsun — YO¥ME, ‘"IN
XL1dALS

T+SHIA

SY¥3A”

J71900L
£Loara

dAr
ga
ga
TIVD

L]
Idd
o
11Y0S
nda

SOQH Jo uoysdea reder ® Bujuuni al,ea IBY} AJTIGA PUR UOTSILA 3}O8UD

,"ZHN 2 1® 3uriwviedo

sef J1 ees

euiTMeu ® oysg

osTe ‘sef ST jInejeq
eseo~Jeddn eoJoy ‘'Kiytied imerd

18300I%YD B 89
peeye—edLl eyl Iwerd

LIXE

INZ IN

11135 ST we}sAs @Yy, "IN
XILdALS

-h-
MSd
1noos-
IN'Y
MSd

N

bLeT

™
NIDS
00¥10"
TN+

. & <h> (N/R) ZHN ,‘QdSH', 3% ung 03 @4IT Noik pTnoM, “IN‘7IN

HHOSHIA

ATIANE

dir
ga
aa
TIVD

Zd
IdD
dod

1TI¥0S
IAN
HSNd

Zd
IdD
INY

or

TIVoS
TIVOS

: (o]

ga

J71990L

HHOSHEA

eT0SUOD 8Y} UO SpOm JI8}0BJIBYD 03 eBuwy) -
-
Ja0N e

123ara

uotieledo STY3} Jo ¥Hoeyo
1Xeu ey} uo JFY UOTENJUOD

ou seley} os Howq eBuwyoxy 8

LIX3

INZ ‘"IN

TI3d" , "PeTIR}SUT jou ST NdD 0BZ V — HOWME, "IN

X1dALS

0BZ JT uaniey 08z

[

¥ pue y eduvyoxg UoT}ONIISUI 08Z 8
S'yY

-

‘G ® utejuod ITTIS TITa Jejistdey Yy oul nNdd 0808
ue sy We}SAE ey} JI 'S ® UTBIUOD jouU [TTA Je3)sTdey v ey
‘0z ® s®y we3lsAs ey} JI -pemtojied ST UOT}ONI}EBUT ,¥ PuU®
v e3ueyoxy (QZ © uey} pue Jei}sTley Yy ey} 0} pesom ST G ¥

Ndo DBZ ® jo eocusesedd ey} AJTiep

7INZ

,Aem Kuw Uy peTJIpPom jouU S WeIEAE,
"IN

,Butjesedo ey3 pue pemiojied,

, 8Jde suotijeiedo Jeyjo oN “peeds ndd,
N

JZYN |, ‘GdSH Pu® 2yp g usesieq,

, 87330} 03} Jesn 8y} sao[T® weldoid,
N

(BTYL "HIeNgy eutzedem dnoun,

, 81880 YjweH ey} Aq pejuesesd,

N

(BUOTIROTJTROW H{OOTD Teng,

, 8y} UiTa erqriedmwoo st meiBoad STYL,
IN'TIN

N
007048d

,Cdp pueTeedd ‘4 Wotdepedd Aq pEeT 1yBriAdeg (9), "IN
dALH® (8H l10J <uotysJep SOOH> 0'T X14033dS 08Z,

IN' .3, '0S3

X1dALS

g4 08z

dir
ada
ga
TIVD

ZNP
140
da
IAW
nda J1sSL08Z

LS108Z “ne

Eofeliic

134
aa
ga
aa
- o]
(o]
ga
ga
ga
daa
da
ga
€a
ga
ga
dga

3s13

L3y
gaa
41

ga
ga
ga
TIVD
nd3a NONDIS

49

REMark * October = 1984

XIdAL TIVD

907108d LON Lhe

JIanN3

LIX3 dNr

TINI+4T"HD da

ZUR , ‘adsH’, e Butiededo sT weisds a8yl ‘4T'HD ga
XLdAL TIVO

20708d 41

ZHN 2 1% ST ¥20T7]! TdXa zr
A7008Z INV

LAGTLD Va1l

$ nba

suotido pue we}sks ey} Jo SN3E}S jusldno 8yl ALJTiuepl

NIVIdX3d

uctjeledo ga

STYl JO HoeYos jxeu ayj} uo! Pict. |
uoTENJUOD ga

ou s, 818y} o§ Woeq eBuvyoxy: 8 da
| ndva

LIX3 Eilly

INZ+ATHD ga

TI3E°, "POITRISUT 30U ST 0BZ ¥ — HOMMA, '4T1'HD ga

XLdAL TIVD

o8z ZNr

g Id2

,¥ pue y eBueyoxy UOTIONIISUI DBZ®] ga
gy IAN

$ ndba

‘g ® uUreluod TITIS [1Ta Je3sT3ed v eu} Ndd 0808
ue sey we}lsAs 8yj JI 'C ® uUTBIUCO jou TTTa Jojstdel y ey}
‘DeZ © sey me3}sAs ey} JI ‘pemiojied ST uoljONIISUT ¥ pue

y e3uwyoxg pgZ v ueyi puw Jej}sider ¥y oy} 0} peAom ST § ¥

Ndo 0BZ ® jo eousesetd ey} £JTIep

JSL0BZ

JdIANE

LAY

TINI+ATHO : (]

,"Aem Aue ut perjipow jou ST wWelsAs, ga
47740 ga

,Butjesedo ey} pue pemiojied, €a

, eJe suortjutedo iayjo oN ‘peeds ndD, da
A4T°¥D : (e}

VZUN , "OdSH pue ZUN 2 ueeaileq, : (a]

, 873307 01 Jesn a8y} smoTe welBoad, ga
474D : (o]

JBTYL “HIenay eutzedem dnoun, ga

. BJesn yileeH ey} £q pejuesedd, ga

NIVIdX3

082

LSLOBZ

. ¥ &

s

06/68H
loj srquesse 0} JT ‘ENML: ISTIVA nbva 68H
BUT] pUBWWOD

JoJ 8[quess® 0} JT ‘@MYL’ asavd nva 90708d
SaYos1TAsS ATquUessy TeuoTlTRUO] -
ANYL LON nda 3sTIvd
FEERE] nda FNHL
suoT}TuUTJeq .s
3e1J euUI[Jo pumy! Hog ndba INE
Aoy edeosy! HetT nva as3
peeJ eutq! HYD nda a7
uinjed edewraae)! Hao nva Ho
TTeg: HLO nba ggict:|
SuoT}IUTIeq IIOSY e
Jojoea dun(goqd: HeO nba soasg
uotjouny jndine Jejomvdeyy! HZOo nda LNONOD
uotiouny jndut Jejomwamwyn! HTO noa NINOD
fiowem Jo UOTIEOOT }Jde}S! HOO nba asvd
Suoritulieq Sodd s
v8—-1Bf-C i}seje] .
v8—qe4-8T iTeutdrig .
‘pef AT HIY uy eufeag .
yotd3ed 4Aq pepraold uorivoTjipom JelTEys v Jed sndD 082 .
D6H 10 g8H 84y} Bursn ueya zZYywp pue zZyYj2 ueemieq o7330} 03 .
peptaotd o0OETE ST UOTSTAONd ‘dnoJg s,1880 YiEeH eyl Jo s
sufeag WoTiied Aq ggf HJIeNIY uT pejuesedd pieoq nNd) 082 *
9—-BYH ey} 03 suoTjedTjTpom ZUyNg 8y} 3ulsn eTTUM ZYRE pue .
ZyNz ueemieq YiloJ puw ¥orq o330} 03 AITITAE BYF UjITA »
Iesn g4 o4y} epraocad o3 st mesBoad styy Jo esodind eyg .
‘Ap pumTesdd ‘J WotTdepetd £q peeT 1uBraddoy (o) »
68H/8H 10J <uUOTSI8A W/4O> 0'T XI4ad3adS 08Z -

Loara

X4a3ads aNd

hich|

INE "IN ga

VZHW ,'QdSH', 3% Buriwiedo mou sy weishs eyy, ‘1IN €a

XLdALS 1TIV0
- noa 1A1990L

L3y

REMark « October + 1984

50

A3TTT9RITed JoJ s3dnilejuf eTqQesTqd!

Ia
nva

8}el %000 meu 8y}
o0} Yo1TAs o} 0OBZ eyl TTel

LIXE

INS+AT ¥ "ZHR 2 e Burjededo [1T1s ST weisds euylL, "J41°HI
47°480

XLdAL

sof JT ee8g! iAo

osTe ‘sef ST j[nejeq! bl
eseo-Jeddn ecyojy ‘A3raed aeerd: HdS
Atdes jen! T

soad

NINOD'D

NG

5 <A> (N/X) ZHW ,'GdSH’', 3% unl o} exTT nok PInoM, "dT'4T'HD
,"ZHW 2 3 Butjyesedo ATjuesano ST welsds eyl, 'd7°HD

XLdAL

00704d LON

007108d

1IXe 05 ‘pejdoqe uoTiouUng!’ LIX3

TINE+4T HD

ZHW . 'GdSH' . 3® Butjededo [TT}S ST weisds ayjl, "471°HD
4771°¥0

XILdAL

sef JT eeg! VA

osT® 'sef ST jINERJOQ! O
esea-Jaddn eozoj ‘'ALytaed drays! H4dc
fir|

soag

NINOD'D

NG
v & <A> (N/A) ZHW 2 1% und o3 e{I[nNok pInoM, 4T d1'H0
,"ZHW 'adSH', e Butiededo ATjuetina sT welshs eyl 'Jd71'dD

F7900L

4IaNE

dAr

aa
ga
TIVD

Zd
IdD

1d2

or
TIVD
IAN

ga
aa
da
TIV0
a1

J4IAaN3
L3
41

nda

JdIaN3E
dWr

ga
#a
da
TV

Ido

Id0
INV
ar
TIVD
IAW

4a
ga
ga

379004

a“ne

TIY

TdX3

i |

d1'¥0 €a

(SUOT}ROTJTPOW ¥OOTO TBMP 843, ga

v 4ita Oﬁnﬁvﬂﬂﬁoo 8T arJBoad BTUL, aad

41 €d

90708d LON AT

JdIaNZ

L34

NG €a

907104d A1

a1°¥0 ga

ydp puetesdd "4 WotJepetd Aq 6T 1yBTiAdog (2),'47°WD ga
dALH® (8H l10J <uotsJep W/d40> 0°T1 XI4Qd3dS 08Z. €a
47°d0° .3, '0s3 €a

X1dAL TIVD

8 noa

81737} meiBoad eyj jutad
NONDIS

j00q WIEM OQ'! HOooDoo dAr

$ noa
A1Temiou /40 1TXe 0} 100q WIeM ® WIojied
LIX3

8}BJ }DOTD
Meu 8y}l 03 OBZ oW} YO1TAS:®
Autop &J,0M jRUM mTY TTeL!

eJay} 3no
0BZ ® 5,838U3} 1BU} AJTIep!

d71990L TIVO
NIVIdX3 TIVO

LSLOBZ TIVD

Autpesy weaBdoad ey) jutad’ NONDIS TIVD
$ nv3
eseq eaocqe eBed 1 j1e15! HOOTO+3svE 9¥0

vely wetdogd

JIAN3

edessem g4 J0J , , IIJSV: HOZ noz
se3esseuw Joj ,g, IIOSY' HEE nda

9-8YH UITa BH JOJ {SBU YO}TAS! €00010000 nda
68H LON 41

dIAN3

e3essen g8H J10J .6, IIOSV! HeE nda
seBusseu JoJ ,p, IIOSY! Hre noa

668H J0J HSBU Yo} faAS ! 400100000 nva

68H dI

HEEN 114 1dod esodind Telsusy
uotTiesol #314Aq ToJjuol! Hao nva

uoT}TuUTjeg Alowey

NONDIS

LIX3

Xda3aads

dALH
adsH
¥1008Z

dALH
JdSH
H1008Z

LAGTLD

-

51

REMark * October * 1984

;Get the present clock rate
'em back on or else..

;And toggle it
;Record it for posterity

;Turn

CTLBYT
Z80CLK

CTLBYT

XRI
STA
EI

LDA

ol
=
= -
d 3
= 5 2
o . =
[~ o L] ==
(5] o =]]
Y] . (= ['4 i -
=T - n b @ @
= . 7] - 3] [-l
] @ o 5] o O
] o = I- =1 a < ® W o
= - o oo e & o =1
- = o - i «
L] o~ = = o L = [- -1
o [- @ o A
@ - - = o D T e oT o0
1= ol o o T+ D000 [- T =
- a b O < o om oo o -
-] b bl m a0 b ok oo + M
E [~ = s b0 ® @ + £ ko
- o 4] émnasa-ﬁmomonx
e - - el =3 = s Q & B 8w bal
-] o« = 5] @ o + O @ o -
[- - @ [BRI « I - o= @
-] @« o - I =R B R (= TR
@ =) =9 =] M 0 @ o+ 0 LD DS DO N
L] o o + nononneEddHEBEZ0
= B A —
=} oﬁ —
= |::+ g
w [
- s | L
- =
g 5 >
@ LS
- . bl
w m - =]
= L Pal
5] L =
= a
(1] o = -
= = - B
= B - o =
Rl - - - e (=] e
ﬁﬂ - -2 = i 9
><I:r..5 Mo fx 0. -+ (=] o] =
08 B A ol d @ ol =] w B E:l]
[=] [g .« - @ = o = 0.
o - o - o+ - - -0 = B [
(2] = DD BEo oD - & o = L O D mI =T =< w0
=
-
bl
™ j | = j | E Eq DJbU:J b'-tn-:h% é a
(= HH
= = - ﬁ (= - momE o = GEOD‘:ZO#OOZ&&[—'E =
= ooa B oaa o~ = & M =oL=<= LEHOR
-
=3 -
3 ¥ B
o - [[
o * ol B
= L A] B

H-1000

A 280/8086 UPGRADE
FOR THE H89/289

HARDWARE

® plug-in replacement for the HB9/Z89 CPU board; no modifi-
cations required

® dual CPUs: ZB0 and BO86E

® 256K RAM standard; sockets for up to 1 megabyte RAM

e 5 1/0 slots

® faster program execution: 2/4 MHz for Z80, 8MHz for 8086

® fully compatible with all Heath/Zenith peripherals

SOFTWARE

® compatible with Zenith Z100 and IBM Personal Computer 56% gg}’:giza_{é D.em:' HA bor. Michi 48107
n Arbor ichigan
® choice of MSDOS or CP/M-86 for the 8086 (313) 994-0784 ' We g t MasterCard and VISA.
® supplied with diagnostic software package T Tm—— Mlme;odoua IZIO::hr Inq‘drlu In\d!tod
i y . turers o
® “soft disk” feature: copies an entire disk in RAM for instant since 1878,
disk access H-1000 and TMS| are trademarks of Technical Micro Systems. Inc HB9, Z89, 2100 and
_ _ HOOS are trademarks of Healh/Zenith Corp., Benton Harbor, Michigan. MSDOS is a
® supports multi-user and multi-task operating systems demark of B A CP/M and CP/M-BE are trademarks of

Digital Research, Inc, Pacilic Grove, California

® runs all Heath/Zenith software without modification Tedlnical Mk:ro SySlemS InC "

REMark * October + 1984

CHECKSUM:
A Program

Proofreading Aid

lt's a tedious task to key a magazine program into a computer. And
once keyed, there are always those illusive Os that should be Osor 1s
that should be Is. You carefully key the program and search for typos.
You run it. You miss some errors. You repeat the process. The great
computer cliche says: There has got to be a better--computerized-
-way.

CHECKSUM is one better way. It reads the program you typed and
outputs a symbol for each program line. If that “‘checksum’’ symbol
does not match the author’s published checksum, you have isolated
an error.

Suppose you run CHECKSUM on a program “TEST.BAS" and you
get the following:

CHECKSUM PER LINE:

meCDE ZB

TOTAL CHECKSUM: F

The published checksum information may be as follows:
CHECKSUM PER LINE:

mebDE ZB

TOTAL CHECKSUM: q

The TOTAL CHECKSUMs do not match (q vice F), signaling the files
are not identical. The CHECKSUM PER LINE reveals the third ele-
ments differ (b vice C). The third CHECKSUM element is the third line
of TEST.BAS, so that program line has an error.

That's how CHECKSUM is used. A couple of caveats are in order.
First, CHECKSUM ignores all spaces. If you have an expression like
PRINT CHR$(27)+"Y4"", CHECKSUM will not see the error if the
space is left out of Y4 . Second, CHECKSUM may miss one error in
52 as it uses only 52 symbols.

Of course, CHECKSUM could check for spaces in quotes. And
CHECKSUM could use more than 52 symbols--the printable ASCII
set. But the first is a minor BASIC related problem and the second
would complicate the display.

While CHECKSUM is written in BASIC and illustrated on a BASIC
program, it works equally well checking Pascal, Assembly, you
name it. | leave it to these programmers to write a version in their
language. | request only that you maintain the checksum algorithm
and keep all checksums standard regardless of language.

Stephen A. Jacob
1435 D Paegelow
Scott AFB, IL 62225

About the algorithm:

The CHECKSUM algorithm is implemented in the “read file and
checksum subroutine” (Listing 1). This subroutine takes each line
character by character. It converts these characters to a number from
1 to 52. The number is then converted to a value representing an
ASCllI character-- 1 converts to 65 for A. The total for the line is stored
in the array S$().

Each element in the array S$() is a line’s checksum. Thefirst element,
S$(1), is the checksum of the first line. Similarly for each program
line. S$(0) stores a checksum of the checksums,

To get CHECKSUM up and running:
1. Using a text editor, key the abbreviated control program (Listing
2). Save this ASCII file as SHRTCON.BAS.

2. Similarly, key the readfile and checksum subroutines (Listing 1)
into an ASCII file labelled RDFILE.SUB.

3. Make a third file called SHORTCS.BAS by merging RDFILE.SUB
into SHRTCON.BAS. This is the "'minimal”’ CHECKSUM program.

4. Once you have debugged the abbreviated program SHORTC-
S.BAS, make a backup copy. Label the backup copy SHORTCS.BAK.

5. Run SHORTCS.BAS on SHORTCS.BAK. The results should be as
follows:

CHECKSUM PER LINE:
QfpTj sBTZg ntUXW hpReo tbXvt LpPHA FDPYy CTMcu QtWyu
eOhLK YxMQV BF

TOTAL CHECKSUM: r

6. If necessary, debug the appropriate lines and try again.

SHORTCS.BAS may be all you will ever need to CHECKSUM pub-
lished programs; however, you may want a menu, a disk save, and
some error checking. The following provides these enhancements.

1. When you are satisfied SHORTCS.BAS works, set it aside.

2. Key the CHECKSUM control program (Listing 3). Notice Listing 3
has code for BASIC80 and ZBASIC. Type these as shown without

modification. They will be removed/modified later. Label this
CS1.BAS

3. MERGE RDFILE.SUB into CS1.BAS. Rename this CS2.BAS.
4. Key in Listing 5 and name it CSSAVE.SUB. MERGE CSSAVE.SUB

REMark * October * 1984

53

into CS2.BAS. 19900 '
20000 RETURN
; CS.BAK.
5. RENAME CS2.BAS to CS.BAS. Make a backup T ——
6. Use SHORTCS.BAS to CHECKSUM CS.BAS. The TESUI!S ShUUId 10 T§="CHECKSUM: PROGRAM PROOFREADING AID"

be as follows: 20 'abbreviated version
30 !
CHECKSUM PER LINE: 40 DIM S§(200)

50 GOSUB 15100
SFllb MPqrp gZmNQ psrat [IVBp KoHtC mNoiQ TAuuV PXphv gg

xtoEw JTZgn tUXWh pReot 70 END
bXvtL pPHAF DPYyC TMcuQ tWyue OhLKY xMQVB FxmNQ ol
: Listing 3: CHECKSUM control pro
pQbyW MgnhO kXrZz ibuxu KVOCK KBVpj e Comtol i
10000 'CHECKSUM: Program Proofreading Aid
TOTAL CHECKSUM: L 10100 'By Stephen A. Jacob; June 20, 1984
10200 !
7. Debug CS.BAS and use SHORTCS.BAS one more time to 10300 'initialization block
CHECKSUM it. 10400 C=27:M=200

10500 DIM S§(M)
8. Delete inappropriate BASIC80 or ZBASIC code to clean up 1oseo0 P§=" "
CS.BAS, then make a backup 10700 T$="CHECKSUM: Program Proofreading Aid"+P§+"
’ ' ’ ver .6"
9. Theotherfiles created are no longer needed and may be deleted. 10800 *
10900 'The next two lines clear the screen for ZBASIC or
10. Use the SAVE command of CHECKSUM whenever you submita 11000 'BASIC80. Run CHECKSUM on itself with both lines in

icati 11100 'and both REMARKED.Then remove the inappropriate
pragram for publlcatlon. 11200 'lines or REMarks throughout.
Listing 1: Read file and checksum subroutine 11300 © CLS
11400 PRINT CHR$(Z27)+"E";

15100 'read file and checksum subroutine 11500
15200 J=0 'storage array location for each line 11600 ON ERROR GOTOQ 22800

'checksum 11700 *
15300 T=0 'total of all checksums (mod 52) 11800 'loop 1: control program
15400 S5=0 'first line checksum {(mod 52) 11900 '
16500 ' 12000 GOSUB 13700 ' menu
15600 ' CLS 12100 IP M§="R" OR M$="r" THEN GOSUB 15100 'read file
15700 PRINT CHR§(27)+"E"; 12200 IF M§="5" OR M§="s" THEN GOSUB 20100
15800 PRINT T§ 'save checksum
15900 PRINT:PRINT "ENTER INPUT FILENAME.EXT: ", 12300 IF M§="Q" OR M§="q" THEN 13100 'quit
16000 ' 12400 '
16100 LINE INPUT F$ 12500 ' LOCATE 23,C
16200 OPEN "I",1,F§ 12600 ' PRINT CHR$(27)+"YTT";
16300 PRINT: PRINT "CHECKSUM PER LINE:"; 12700 PRINT "Press any key to continue. ";
16400 ' tA$=INPUT$(1)
16500 ' loop 2: read file until exhausted 12800 '
16600 IF EOF(1) THEN 17500 12900 GOTO 11800
16700 * false 13000
16800 J=J+1:5=0 13100 'end loop 1
16900 LINE INPUT #1.L$ 13200 '
17000 GOSUB 18500 13300 ‘return all parameters to normal
17100 IF J MOD 5 =1 THEN PRINT" "; 13400 ' CLS
17200 IF J MOD 65=1 THEN PRINT 13500 PRINT CHR$(27)+"E";
17300 PRINT S§(J); 13600 END
17400 GOTO 16600
17500 ! true Listing 4: Menu subroutine
:3-6_.33 ' anngzgp#; 13700 'menu subroutine
17800 45900 ¢
17900 'write total 438900 CLs
18000 «PRINT:PRINT:PRINT"TOTAL CHECKSUM: "; 14000 PRINT CHFB(z'nf"E‘--'; .
18100 T=T+64:IF T>90 THEN T=T46 i:;gg ‘ PRINT T$:PRINT:PRINT:PRINT
i:igg ! SREUISCHERL T R RENT 199 (5) 14300 PRINT TAB(C);"R - Read a file from disk"
18400 RETURN 14400 PRINT TAB(C);"S - Save checksum to disk"
18500 'checksum sub 14500 PRINT TAB(C):"Q - Quit"
18600 K=0:L1=LEN(L§) 44800 *
18700 14700 PRINT:PRINT: PRINT: PRINT TAB(C+5);
18800 ' 1loop 3: determine line checksum "ENTER SELECTION: ";
18900 IF L1=0 THEN 19400 ELSE K=K+1:Li=L1-1 14800 ~ LINE INPUT;M$
19000 A$=MID$ (L$.K, 1) 14800 °
19100 IF A$<"" THEN X=ASC(A$)-32 ELSE X=0 15000 RETURN
ig;gg ;.{r?fﬂ;éumn A Listing 5: Save checksum and error checking routines
19400 ' end loop 3 20100 'save checksum to disk subroutine
19500 ' 20200 '
19600 T=(T+S-1) MOD 52+1 20300 ' cCLS
19700 S5=5+64:IF S>90 THEN S=S+6:5$(J)=CHR$(S) 20400 PRINT CHR$(27)+"E";
19800 S§(J)=CHR§(S) 20500 !
54

REMark * October « 1984

20600 FRINT T%
20700 IF J=0 THEN GOSUB 15100
'If no sums before, go to read file subroutine
20800 PRINT: PRINT
"ENTER QUTPUT FILENAME (extention will be .CKS): ";
20900 K=0
21000 LINE INPUT F$
21100 F§=F§+" . CKS"
21200 '
21300 OPEN "0O",1,F$
21400 PRINT #1,"CHECKSUM PER LINE: ";

21500 ' 1loop 4: print checksum to disk

21600 IF K=J THEN 22300

21700 ' false

21800 KeK44

21900 IF K MOD 5=1 THEN PRINT #1.," ";

22000 IF K MOD 65=1 THEN PRINT #1,

22100 PRINT #1,58(K):

22200 GOTO 21500

22300 true

22400 PRINT #1,:PRINT #1,:PRINT #1,
"TOTAL CHECKSUM: ";S§(0)

22500 CLOSE #1

22600 ' end loop 4

22700 RETURN

22800 'error routine

22300 LOCATE 20,10

23000 ' PRINT CHR§(27)+"Y4 ";

23100 PRINT: PRINT TAB(10};

23200 PRINT
"An error occurred. Check filename and disk
space available."

23300 CLOSE

23400 RESUME 12700

H/Z-100 AND 150 PC
GRAPHICS SOFTWARE

MICROSERVICES continues to expand its support of
Heath/Zenith computers.

For H/Z-100s:

ZANIMATE. Make color animation sequences using
ZBASIG civnaaisminisssmms s s s $64.95

ZPALETTE. Draw images in 92 colors using ZBASIC. Im-
proved with three (3) painting modes and graphics

o 1:1 T-1 -1 (o] RS T s SODIID
ZPATTERN. Test your color monitor $24.95
Z3D from COLORWORKS. Make three-dimensional ob-
jects incolor R IIa——— $75.00

For H/Z-100s and 150 PCs:

SOFTKITS from KERN INTERNATIONAL. We are now
carrying a full line of this excellent series of books and
disks for graphics and business/scientific applications.

We are continuing to introduce new products.
Write for our catalog.

MICROSERVICES .
P.O. Box 7093 @
Menlo Park, CA 94026 |

Phone: (415) 851-3414

include 3% p/h ($3.00 min.). California add 6%% tax.

H

CONTROLLER

FOR 8”
& 5:25”
DRIVES

Now be able to run standard 8" Shugart compatible drives
and 5.25" drives (including the H37 type) in double and
single density, automatically with one controller.

Your hard sectored 5.25" disks can be reformatted and
used as soft sectored double density disks. The FDC-880H
operates with or without the Heath hard sectored controller.

PRICED AT $395
Includes controller board CP/M boot
prom, I/O decoder prom, hardware/soft-
ware manuals BIOS source listing.
HDOS driver now available for $50.00.
5-20 day delivery-pay by check, C.0.D., Visa, or M/C.

Contact

C.D.R. Systems Inc.
7210 Clalremonl Mesa Blvd.
San Diego, CA 92111

Tel. (619) 560-1272

ANNOUNCING THE MODIFIER

A disk utility that modifies the CP/M BIOS to be able to read and
write to a number of 5.25” CP/M disk types.
There Is a growing need for the everyday user of computer systems to be able to take
data files home from the office to continue to work on them. The computers at home
and at work may both run a version of CP/M, but the disk structures may be
incornpnilbla his is especially a problem in the 5.25" world. MODIFY 89 was
this p . MODIFY 88 makes the CP/M operating system

acce-ss a spec:l'led 5.25" drive as one of the below disk types.
Disks placed in that drive that are ot the specified type can be used as if they were one

of the dard disk types by the H8, H/Z89 or H/Z90 computers. Thus PIF,
STAT, DIR and others will work for 1hat disk also. The price for MODIFY 89 is $49.95.

MODIFY 89 is set for the following disk types:

* Access S.S. D.D. * Otrona D.S.D.D.”

¢ Cromemco S.S. D.D. ¢ Superbrain Jr. §.S. D.D.

* DEC VT180 S.S. D.D. = Tl Professional S.S. D.D.

¢ IBM PC/Zenith 100 (CP/M) S.S. + TRS-80 Model | (Omnikron
D.D. CP/M)

« IBM PC/Zenith 100 (CP/M) D.S.- = TRS-80 Model Il (MM
D.D.* CPIM)

= Xerox 820 S.S. S.D.

* Xerox 820-11 S.S. D.D.

= Kaypro Il S.S. D.D.
. ggmw Micro Decisions S.S.

* Standard
* NEC PC-8001A S.S. D.D. ests for H/Z37 and
* Osborne S.S. S.D. .D.R. Disk types)

* Osborne S.5. D.D. * = Double sided 5.25" drive required
5.8, =single sided, D.S. = double sided, 5.0. = single density, D.D. = double density

Limitations: MODIFY 89 Is not a disk duplicate program. It is currentty available for use

with an H/Z89 or H/Z90 computer that has an FDC-880H double density B” and 5.25"

controller, using C.D.R.'s BIOS V.2.9 or with an HB computer using the FDC-HB by
C.0.R. Systems, Inc.

MODIFY 100 will soon be released for the Z100 line of computers at a price of $75.00.
Contact:

C.D.R. Systems, Inc.
7210 Clairemont Mesa Blvd., San Diego CA 92111
Telephone: (619) 560-1272

Or a C.D.R. Systems, Inc. dealer near you.

REMark * October « 1984

55

The one-stop
microcomputer
shopping center

your strong partner in '
microcomputers ¥

5 NEW printers
and plotters

2 NEW IBM

PC compatible
computers

0y
ar
!

.'-lj . Q]
kil ——
Electronic
Where you get more by doing Center

Advanced

Assembly Language

Programming:

Long Relative Addressing for the 8080 and Z80

N‘icroprocessors point to locations in memory in two basic ways:
by specifying the address explicitly, or by specifying it relative to
another address. When the second form is used exclusively in a
program, the program can be |located anywhere in memory. Newer
microprocessors, such as the 8088 in the Z-100, use this form, called
“relative addressing”’, almost entirely, and the programmer is hardly
ever concerned with where a program is actually located in memory
when it runs.

The 8080 microprocessor (used in the H8), however, provides no
relative addressing at all, and its cousin, the Z80 (used in H89's and
some HB8’s) provides only short relative addressing (- 129 to +127
bytes from the current instruction) for a few control transfer (jump)
instructions. Methods have been devised to provide relocatable
programs for 8080 and Z80 processors such as the Digital Research
PRL (Page RelLocatable) method in which a table describes absolute
addresses in a program that must be changed when it is relocated. A
loader program is required to interpret the table when the program is
located to its actual running address. The program is not really
relocatable, itis just patched. To achieve true relocatability with the
8080 orZ80, you need a way of specifying addresses as offsets from a
known point as the Z80 does with its relative jumps, but within the
entire 64k of addressable memory, and you must be able to do it for
data transfer as well as control transfer. In this article, | will present a
way of obtaining this kind of addressing, called long relative addres-
sing, with the 8080 and Z80 for both types of transfers.

In microprocessors that have relative addressing capability, the re-
ference point to which the desired address is related is often (but not
always) the instruction pointer. Therefore, if you could somehow
obtain the value of the instruction pointer at any point in a program,
you could implement relative addressing. In the 8080, as in most
micros, the value of the instruction pointer is saved in memory
(“pushed’” onto the “‘stack”) whenever a subroutine is called, A
subroutine that obtained that value and returned it to the calling
program would make relative addressing possible, and in the 8080, it
can be done with only two instructions: XTHL and PCHL. The first
instruction, XTHL, exchanges the value in the HL register pair with
the value of the instruction pointer on the stack. The second, PCHL,
transfers control to that address, which is back in the main program.
The old value of the HL register pair is still on the stack, so no data has
been destroyed. The program can now add the distance to a desired
address to the HL register pairand calculate the absolute value of that
address.

The only problem with this approach is where to put the two- byte
subroutine. The best place is at an unused restart (interrupt) vector
location, because then it can be called using a single byte (software
interrupt) instruction, RST. The relocatable program itself can place

Pat Swayne
Software Engineer

the two instructions XTHL and PCHL into memory at the restart
address.

Listing 1 is a set of macros designed for use with Digital Research’s
MAC macro assembler that implements relative addressing using this
technique. The function of each macro is explained in the listing. By
using macros, mnemonics that provide long relative addressing ver-
sions of normal 8080 instructions can be used to make writing a
relocatable program easy. The basic technique used in each macro is
to first obtain the value of the instruction pointer by calling the
special subroutine (RST 6). A local label (HERE) immediately follow-
ing the subroutine is subtracted at assembly time from the desired
address to get the distance from HERE to the address. This distance
will be a positive number if the address is after HERE, and a negative
number if it is before HERE. The distance is then added to the
instruction pointer value to obtain the absolute value of the desired
address. Note that neither your specified address nor the address of
HERE are assembled into the program, but only the distance bet-
ween. That means that if a program is written using only these
macros, it will contain no absolute addresses except those outside
the program that are referenced.

The subroutine return instruction (RET) is used in all of the control
transfer macros for the actual transfer, and conditional returns are
used for conditional transfers. Because of the way the MAC assem-
bler handles instruction names, they can be used as arguments to
other instructions. This makes it possible to use a conditional return
instruction to specify the condition for a conditional transfer macro.
The result is that only one conditional jump macro and one condi-
tional call macro had to be written.

A practical application of this method of making programs relocata-
ble is the SEARCH program in listing 2. This program provides a
memory search extension to the DDT debugging program that is
provided with CP/M. The assembled .COM file of this program can
be loaded anywhere into memory with DDT’s R command and then
executed wheneveryou need to search an area of memory for a word
or byte constant. For example, if you wanted to load it in at 8000H,
you could enter

~ISEARCH.COM
-R7FO0

The offset 7FO0 must be used because the starting point is the CP/M
Transient Program Address (TPA), which is 1T00H. To execute the
program, use the G command to jump to 8000H, and the program
will display the letter S followed by a colon (:) for a prompt. The
syntax for using the program is

S:<start addr>,<end addr>,<constant><W>

REMark * October * 1984

57

The letter W must be typed after the constant if you want to search for
a Word (16 bits). Otherwise, the program performs a byte search (8
bits). Each time the program locates your word or byte, it prints the
address where it was found until it reaches the end address, and then
it re-displays its prompt. To exit the program and return to DDT, just
type a period (.) at the prompt. The program preserves all registers
when it is running so it can be used while you are debugging a
program. The Program Counter (instruction pointer) register is, of
course, not preserved, so you should note its value before you run the
program. You can run the search program as a stand-alone CP/M
program by removing the PUSH instructions at the beginning, re-
moving the POP instructions below the label EXIT, and replacing the
RST 7 instruction with a RET.

The search program represents only one use for fully relocatable
code. Another good use would be a ROM (Read Only Memory)
monitor program that could be “plugged in”” to any address. This
article illustrates that with proper programming a microprocessor's
limitations can be overcome. It also points out that software is a
major factor in determining the efficiency of any computer.

H LONGREL ~ LONG (16-BIT) RELATIVE ADDRESSING
H FOR THE 8080 PROCESSOR

H THESE MACROS PROVIDE 16-BIT RELATIVE ADDRESSING

H FOR 8080, Z80, AND SIMILAR PROCESSORS. CODE THAT
H IS WRITTEN USING THESE MACROS EXCLUSIVELY FOR

i JUMPS, CALLS, AND DATA STORAGE AND RETRIEVAL

H WITHIN THE PROGRAM CAN BE RUN ANYWHERE IN MEMORY.

i TO USE THESE MACROS, THE FOLLOWING INSTRUCTIONS
H MUST BE PLACED AT THE "RESTART 6" VECTOR:

i XTHL ; GET RETURN, SAVE HL
PCHL ; RETURN WITH HL = PC

H BY P. SWAYNE., HUG 28-SEP-83
H NOTE: ALL OF THESE MACROS DESTROY THE CARRY FLAG,
H EXCEPT FOR THE CONDITIONAL JUMP AND CALL

JRL — JUMP RELATIVE LONG

JRL: MACRO ADDR

LOCAL HERE
RST 6 v+ GET PC IN HL

HERE: PUSH D i: SAVE DE
LXI D, ADDR-HERE i: GET OFFSET TO DESTINATION
DAD D 1+ ADD IT TO THE PC VALUE
POP D ;: RESTORE DE
XTHL .+ PUT ADDR ON STACK, GET HL
RET :: TAKE THE JUMP
ENDM

i JRLF — JUMP RELATIVE LONG, FASTER VERSION
H THIS MACRO DESTROYS THE DE REGISTERS.

JRLF: MACRO ADDR

LOCAL HERE
RST 6 +i GET PC IN HL

HERE: LXI D, ADDR-HERE :+ GET OFFSET TO DESTINATION
DAD D ;i CALCULATE DESTINATION
XTHL ;3 PUT ADDR ON STACK, GET HL
RET ;: TAKE THE JUMP
ENDM

H JRLC — JUMP RELATIVE LONG CONDITIONAL

: THE CONDITION FOR THE JUMP IS SPECIFIED IN THE
H FORM OF A RETURN INSTRUCTION OF LIKE CONDITION

s DEST:

JRLC:

CRL:

AFTER THE ADDRESS, AS THIS EXAMPLE OF JMP ON ZERO.
JRLC DEST,RZ » JUMP ON ZERO

e ; COME HERE IF ZERO FLAG SET

MACRO ADDR, COND

LOCAL HERE

RST 6 :: GET PC ADDRESS

PUSH D i SAVE DE

PUSH PSW ;i SAVE FLAGS

LXI D, ADDR-HERE

DAD D ;; CALCULATE DEST. ADDRESS
POP PSW ;; RESTORE FLAGS

POP D ;; RESTORE DE

XTHL ;: PUT DEST. ON STACK, GET HL
DB COND ;. EXECUTE THE JUMP

INX SP ;: OR FIX THE STACK

INX SP

ENDM

CRL — CALL RELATIVE LONG

CALL THE ROUTINE AT THE SPECIFIED ADDRESS

MACRO ADDR

RST 6 ;: GET PC IN HL

PUSH D ;1 SAVE DE

LXI D, 16 ;+ OFFSET TO CODE AFTER THIS
DAD D ;+ CALCULATE RETURN ADDRESS
POP D ;: RESTORE DE

XTHL ;; PUT RETURN ON STACK, GET HL
JRL ADDR ;3 JUMP TO THE ROUTINE

ENDM

CRLC — CALL RELATIVE LONG CONDITIONAL

THIS MACRO WORKS LIKE JRLC, WITH THE CONDITION
SPECIFIED BY A RETURN INSTRUCTION AFTER THE ADDRESS.

MACRO ADDR, COND

RST 6 i+ GET PC IN HL

PUSH D ;3 SAVE DE

PUSH PSW ;i SAVE FLAGS

LXI D,.24 ;; OFFSET TO CODE AFTER THIS
DAD D ;+ CALCULATE RETURN ADDRESS
POP PSW ;: RESTORE FLAGS

POP D ;. RESTORE DE

XTHL 1+ PUT RETURN ON STACK, GET HL
JRLC ADDR, COND :: EXECUTE THE SUBROUTINE
INX SP i+ OR FIX THE STACK

INX SP

ENDM

SRPR — STORE REGISTER PAIR RELATATIVE
{REPLACES SHLD, AND Z80 SDED AND SBCD)

STORE THE CONTENTS OF THE SPEC1FIED REGISTER
PAIR AT A RELATIVE LOCATION. THIS MACRO DESTROYS
THE DE REGISTERS, IF THE DATA REGISTER PAIR IS HL.

MACRO ADDR, REG

LOCAL HERE

RST] ;+ GET PC ADDRESS

DS 0

IF REG NE H

PUSH REG ;: PUT DATA REGISTER ON STACK
ENDIF

IF REG EQ B

LXI B, ADDR-HERE

DAD B ;; CALCULATE STORE ADDRESS
POP B i+ GET DATA REGISTER VALUE
MoV M, C ;. STORE IT

INX H

MOV M,B

58

REMark * October * 1984

ELSE
LXI
DAD
POP
MOV
INX
Mov
ENDIF
IF
POP
ELSE
XCHG
ENDIF
ENDM

D, ADDR-HERE

ETET00
™

(=]

REG NE H
H

; CALCULATE STORE ADDRESS

; GET DATA REGISTER VALUE

:: STORE IT

;:+ RESTORE HL

:; RESTORE HL VALUE FROM DE

H LRPR — LOAD REGISTER PAIR RELATIVE
: (REPLACES LHLD, AND Z8C0 LDED AND LBCD)

LOAD THE SPECIFIED REGISTER PAIR WITH THE
DATA AT A RELATIVE LOCATION.

i DESTROYS DE IF REG = HL

MACRO
LOCAL
RST
HERE: DS
IF
LXI
DAD
Mov
INX
MOV
ELSE
LXI
DAD
MOV
INX
MoV
ENDIF
IF
POP
XCHG
ELSE
POP
ENDIF
ENDM

REG, ADDR
HERE

6

a

REG EQ B

B, ADDR-HERE

wIaow
=

D, ADDR-HERE

oxXTmo

.

REG EQ H
H

H

'

e

GET PC ADDRESS

CALCULATE STORE ADDRESSS
LOAD DATA TO BC

; LOAD DATA TO DE

: FIX STACK

PUT RESULT IN HL

: RESTORE HL

LRI — LOAD RELATIVE IMMEDIATE
(REPLACES LXI REG,DATA)

i LOAD THE SPECIFIED REGISTER PAIR WITH A
H RELATIVE ADDRESS.
i TO A RELATIVE ADDRESS, USE

H LRI
H SPHL

MACRO
LOCAL
RST
HERE: DS
IF
PUSH
ENDIF
LXI
DAD
IF
POP
ENDIF
IF
PUSH
POP
POP
ELSE
XTHL
POP

H.ADDR

REG, ADDR
HERE

6

0

REG NE D
D

D, ADDR-HERE
D

REG NE D

D

REG NE H
H

REG

H

H

TO SET THE STACK POINTER

; PUT THE VALUE IN HL

.

AND THEN INTO SP

i: LOCATE PC ADDRESS

;: CONDITIONALLY SAVE REGISTERS

; CALCULATE ADDRESS TO LOAD

;: RESTORE DE

;: PUT RESULT ON STACK
;+ TRANSFER IT TO TARGET REGISTER

RESTORE HL

PUT RESULT ON STACK
GET IT. FIX STACK

SRR

HERE:

LRR

HERE:

® % & & & & &5 ® & & =

BDOS
CONOUT
PRINT
RCBUF

START:

MLOOP:

ENDIF
ENDM

SRR - STORE 8-BIT REGISTER RELATIVE

(REPLACES STA, AND PROVIDES B AND C REG. STORE)

STORE THE CONTENTS OF THE 8-BIT REGISTER

AT A RELATIVE LOCATION

BE A, B, OR C.

MACRO ADDR, REG

LOCAL HERE

RST 6

LXI D, ADDR-HERE
DAD o]

MOV M, REG

POP H

ENDM

;: LOCATE PC

;; CALCULATE STORE ADDRESS
;; STORE REGISTER DATA
;; RESTORE HL

LRR — LOAD 8-BIT REGISTER RELATIVE

(REPLACES LDA, AND PROVIDES B AND C REG. LOAD)

LOAD THE SPECIFIED 8-BIT REGISTERS WITH

THE DATA AT A RELATIVE LOCATION.
DESTROYS DE

MUST BE A, B, OR C.

MACRD REG, ADDR
LOCAL HERE

RST 6

LXI D, ADDR-HERE
DAD D

MoV REG,M

POP H

ENDM

;+ LOCATE PC

s CALCULATE LOAD ADDRESS

;i LOAD DATA
;3 RESTORE HL

SEARCH — MEMORY SEARCH FOR DDT

THIS PROGRAM PROVIDES A MEMORY SEARCH
COMMAND TO AID IN PROGRAM DEBUGGING WITH
DIGITAL RESEARCH'S DDT.

IT USES THE LONGREL MACRO LIBRARY TO
MAKE IT A COMPLETELY POSITION INDEPENDENT

PROGRAM .

BY P. SWAYNE, HUG 28-SEP-83

MACLIB LONGREL

CP/M DEFINITIONS

EQU 5
EQU 2
EQU 9
EQU 10
ORG 100H

PUSH HIPUSH D!PUSH B!PUSH PSW

LXI H.DESE3H
SHLD 60Q

LXI H.O

DAD SP

SRPR USRSTAK,H
LRI H, STACK
SPHL

LRI D, PROMPT
MVI C, PRINT
CALL BDOS

LRI D, INBUF
PUSH D

MVI C.RCBUF
CALL BDOS

THE REGISTER MUST
DESTROYS DE

THE REGISTER

; INCLUDE RELATIVE MACROS

;BDOS VECTOR

; CONSOLE OUTPUT
s PRINT FUNCTION

;READ CONSOLE BUFFER

; START HERE, FOR NOW!

+GET "XTHL, PCHL"
; SET RST & VECTOR

;LOCATE USER STACK

;SAVE IT

1 SET LOCAL STACK

; PRINT PROMPT CHARACTER
; SAVE BUFFER ADDRESS

;GET USER'S INPUT

; SAVE ALL REGISTERS

REMark * October = 1984

59

POP H +HL = BUFFER DAA
INX H :POINT TO COUNT PUSH B :SAVE REGISTERS
MOV AM :GET IT PUSH D
ORA A s NULL ENTRY? PUSH H
JRLC MLOOP,RZ ;IF S0, TRY AGAIN MOV E.A ; CHARACTER TO E
MOV E,A ;ELSE, PUT COUNT IN E MVI C, CoNOUT
MVI D,0 ;DE = COUNT CALL BDOS i PRINT CHARACTER
INX H ; POINT TO COMMAND POP H ;RESTORE REGISTERS
PUSH H :SAVE THIS ADDRESS POP D
DAD D ;MOVE TO END POP B
MVI M,13 ; TERMINATE COMMAND RET
POP D ; GET COMMAND START
LDAX D ; GET FIRST COMMAND LETTER ® COMPARE HL TO DE, SET CARRY IF HL > DE
CPI 2\ ; PERIOD?
JRLC EXIT,R2 +IF 80, EXIT CPHD: MOV A H
CRL RDNUM ;READ NUMBERS ENTERED ORA L
JRLC MLOOP,RC ;BAD ENTRY STC
POP PSW ; GET DELIMITER RZ ;DON'T ALLOW WRAP-AROUND
POP B ; GET SEARCH NUMBER MOV A.E
POP D . GET END SUB L i SUBTRACT
POP H 1 GET START MOV AD
CPI ‘W ;WORD SEARCH? SBB H » SUBTRACTION DETERMINES
JRLC SLOOP1,RNZ :NO, BYTE SEARCH RET ; RESULT
" WORD SEARCH LOOP * EVALUATE INPUT NUMBERS
SLOQFP: MOV AM ;GET A CHARACTER RODNUM: MVI c.3 + GET THREE NUMBERS
CMP c ; TEST RDNUMA : LXI H,O ; CLEAR HL
INX H ; MOV TO NEXT CHAR RDNUMO : LDAX D 1 GET A CHARACTER
JRLC NEXT, RNZ ; NO MATCH INX D
MOV AM RDNUM1 : MOV B,A iSAVE IT
CMP B : TEST HIGH BYTE CRL BIN ; CONVERT TO BINARY
NEXT: DCX H :BACK UP TO WORD START JRLC RDNUMZ,RC ;NOT A NUMBER
CRLC FOUND,RZ ; FOUND MATCH DAD H ;MOVE LAST ENTRY
INX H ;SKIP TO NEXT POSITION DAD H ;OVER 4 PLACES
CRL CPHD ; TEST FOR END DAD H
JRLC SLOOP,RNC ;LOOP UNTIL END DAD H
JRL MLOOP ; GET NEXT INPUT ORA L
MOV L.A 1 ADD LATEST ENTRY
X BYTE SEARCH LOOP JRL RDNUMD :GET ANOTHER ENTRY
RDNUM2: XTHL :SWAP RETURN ADDR, HL
SLOOP1: MOV AM iGET A CHARACTER PUSH H i REPLACE RETURN ADDR
CMP c ; TEST MOV AB ;GET LAST ENTRY
CRLC FOUND,RZ ; PRINT ADDRESS IF MATCH CPI Vit ; COMMA?
INX H :SKIP TO NEXT BYTE JRLC RDNUM3.RZ . YES
CRL CPHD ;TEST FOR END RDNUMX: Mov A B 1ELSE, GET DELIMITER
JRLC SLOOF1,RNC : LOOP UNTIL END POP H ;GET RETURN ADDRESS
JRL MLOOP +ELSE, GET NEXT INPUT PUSH PSW ;PUT DELIMITER ON STACK
PUSH H : RESTORE RETURN ADDRESS
¥ FOUND MATCH, PRINT ADDRESS ORA A i CLEAR CARRY
DCR (] ; ENOUGH NUMBERS?
FOUND: PUSH H : SAVE REGISTERS RZ :YES, RETURN OK
PUSH D STC ;ELSE, MARK ERROR
PUSH B RET » AND RETURN
MVI E.13 RONUM3 : DCR c ; COUNT THIS NUMBER
MVI C,CoNOUT JRLC RDNUMA,RNZ :LOOP IF NOT LAST
CALL BDOS 1 PRINT CR INR C JFIX C
MVI E, 10 JRL RDNUMX . ELSE, EXIT
MVI C, coNouT
CALL BDOS i PRINT LF " CONVERT BINARY TO ASCII
POP B ;RESTORE REGISTERS
POP D BIN: sSuI o’
POP H RC ;:LESS THAN "O"
Mov A.H ;GET HIGH BYTE ADI 'g'='G'
CRL PBYTE ;PRINT IT RC :GREATER THAN "F"
MOV AL :GET LOW BYTE ADI 6 ; PROCESS "A" — "F"
PBYTE: PUSH PSW 1 SAVE BYTE JRLC BINO,RP
RLC :MOVE HIGH NIBBLE DOWN ADI /1
RLC RC ;":" THROUGH "@"
RLC BINO: ADI 10 ; ADJUST
RLC ORA A s CLEAR CARRY
ANI OFH i ISOLATE IT RET
CRL PNIB ; PRINT IT
POP PSW ;GET BYTE . EXIT TO DDT
ANI OFH i ISOLATE LOW NIBBLE
PNIB: ADI 90H :"A" OR GREATER SETS CARRY EXIT: LRPR H,USRSTAK ;GET USER'S STACK
DAA SPHL ;SET IT
ACI 40H . ADJUST POP PSW!POP BIPOP DIPOP H ;RESTORE REGISTERS
60

REMark * October + 1984

RST 7 :RETURN TO DDT
¥ DATA AREA
PROMFT DB 13,10,'S:§’
USRSTAK DW 8]
INBUF DB 20,0
DS 20+32
STACK DB o

END START

... AND HUG nas

Crear PRoDOCTS
Tooo /

r"cmo. .. the best software

buy in Americal’’ —wcrosystems

Other technically respected publications like Byte
and Dr. Dobb's have similar praise for The Software
Toolworks’ $49.95 full featured ‘C' compiler for CP/M®
and HDOS with:

|/O redirection

= command line expansion

» execution trace and profile
e jnitializers

s Macro-80 compatability

* ROMable code

* and much more!

‘“We bought and evaluated over $1500
worth of ‘C’ compilers. . . C/80 is the one

we use.”’
— Dr, Bruce E. Wampler
Aspen Software
author of "Grammatik”

The optional C/80 MATHPAK adds 32-bit floats and
longs to the C/80 3.0 compiler. Includes /O and trans-
cendental function library all for only $29.95!

C/80 is only one of 41 great programs each under

sixty bucks. Includes: LISP, Ratfor, assemblers and
over 30 other CP/IM* and MSDOS programs.

Faor your free catalog contact:

The Software Toolwbrks'
15233 Ventura Blvd,, Suite 1118,
Sherman Oaks, CA 91403 or call 818/986-4885 loday!

CPIM 15 a registered trademark ol Digital Research

If you are
reading a borrowed
copy of REMark...

maybe now is the time to join the National
Heath/Zenith Users’ Group. You will re-
ceive:

e a copy of REMark filled with new and exciting
articles and programs each month

® access to the HUG library filled with a large
variety of programs

e discounts on a variety of Heath/Zenith computer
products (see REMark January, 1984 issue for more
details)

And remember, your local HUG is an excellent
source of information, support and comradery. A
membership package from the National Heath-
/Zenith Users” Group contains a list of current local
HUG clubs as well as other interesting information.

REMark = October = 1984

61

(LISP) for H89

Artificial Intelligence Language
UO-LISP Programming Environment
The Powerful Implementation of LISP
for MICRO COMPUTERS

Excellent for developing A.l, ROBOTIC, EXPERT
and INTELLIGENT SYSTEMS

The usual LISP Interpreter Functions
Data Types, Structure Editor,

Screen Editor with Mouse Support,
Optimizing LISP Source Code
Compiler & Assembler, Assembly &
LISP Code Intermixing, Compiled
Code Library Loader, Numerous Utility
Packages, Hardware and Operating
System Access, Session Freeze and
Restart, Comprehensive 350 page
Manual with Usage Examples, and
much more is available with the
ADVANCED INTERPRETER, your
environmen! may cause constraints,
review catalog.

Other UO-LISP products mnclude META a iranslator writing system,

RLISP a high level language, and LISPTEX a text lormatter

]
INEW! | EARN LISP FOR $39.95
The "LEARN LISP" Interpreter includes a subset of the above
description, manual includes tutorial.
The UQO-LISP Programming Environment runs on the H89 with CPM.

Package Prices range from $39.95 ro $300.00.
Manuals may be purchased separately.

TO ORDER: First send for your FREE catalog which lists technical details,
distribution formats, and ORDER FORMS.

VISA and Masiercard accepted.
Northwest Computer Algorithms
P.O. Box 90995, Long Beach, CA 90809 (213) 426-1893

FLOPPY DISK 1

CONTROLLER

Controls Any Combination Of Up To Four
8" and 51" Drives

This easy to install plug in board can control any
combination of single or double sided, single or
double density drives.
Designed especially for H88/H89 users.

® Fully compatible Bios supplied for your CP/M
2.2 operating system
Easy to follow instructions
Contains controller board with boot prom
Order cables for connection $15 (HFDC-110)

Introductory Offer $395,
Order HFDC-100

ORTH

OAST
NTELLIGENCE

1201 Cherokee Trail

Willoughby, Ohilo 44084

Phone: 216-848-7756
Check, COD, VISA or MC — 90 Day Warranty

-

H89/Z90’s CAN
NOW DEAL WITH
A FULL DECK!

THE ORIGINAL ALL-IN-ONE.
ACCESSORY BUS EXPANDER.

MHB89+3 doubles expansion capacity. Allow
for 6 right-hand type cards instead of the usual 3.
Foom at tast to run those neat accessory boards
you've seen advertised!

motherboard installs internally with a

i/

Piggyback
screwdriver in just minutes — with no modifica-

No overheating problems! Simple design draws
littie power. Leaves plenty of overhead for the
minimal load of most accessories. Full technical
information provided

The best news about this “No-hassle” design is

e prica— DMLY $150. avcut 173 the
peice of other solutions!

Price includes assembled and tested MHB9+3
xpander, complete Instructions and one (1) year
warranty, CA residents add 6% tax USA include

$5 shipping. Foreign add $10. Telephone and
COD orders accepted.

mako data products

1441-BN. RED GUM, ANAHEIM, CA92806
PHONE (714) 632-8583

REMark « October « 1984

<1 Vectored from 7
Toggling Along With WordStar
Dear HUG,

In the July, 1984 issue of REMark, Gary Deley described his set of
patches for WordStar which implement some of the features of the
C.Itoh 8510A printer. His principal goal seemed to be the printing of
sub and superscripts, which he implemented with a combination of
escape sequences requiring ten keystrokes to enter the sub or
superscript mode and six to leave it.

| found a simpler way to print sub and superscripts and to use several
other features of the 8510A, The superscript mode is toggled with the
normal WordStar command AT, and the subscript mode with ~V.
(Three keystrokes each.) | will not repeat Deley’s very clear direc-
tions on the use of DEBUG to install patches or his discussion of the
various WordStar printer control commands.

Apparently, when WordStar encounters a subscript or superscript
toggle it looks to see if ROLUP or ROLDOW have been installed. If
they have not, then it uses a half line space if PSHALF has been
installed. To get a superscript it moves down a half space, prints a
whole line consisting of blanks everywhere except for the
superscript, and then goes down another half space to print the
remainder of the line, substituting blanks for the superscripts. Sub-
scripts are handled in an analogous way. Thus, you can get super and
subscripts by installingonly PSHALF. The major disadvantage is that
the superscripts are a half line up, so they overlap the preceeding line
in single-spaced text. Another disadvantage comes from the fact that
code 20H in the 8510’s Greek font is not a space but an o. You will
get occasiona unwanted «'s if you use Greek characters in sub or
superscripts, and the only sure-fire remedy | have found is white
paint!

Ifound that | prefer the looks of the Elite font on the 8510, and using it

I have ample room for margins, so | installed it as the default, using
PSINIT. This routine also resets various other options and sets the left
margin to the first column, since WordStar takes care of margins by
itself. The four user defined functions were then available for font
changes. ~Q switches to the Greek font, #W to the Pica, ~E back to
Elite, and ~R issues an ESC so that other printer commands may be
constructed (at the cost of messing around with the line length, since
the remainder of the ESC command will not print but will be counted
by WordStar as part of the line). Elongated characters are called forth
with ~A and terminated with ~N.

Finally, | found that the underscore characteron the 8510A is placed
in line with the bottom edge of the capital letters. Thus, if you use
WordStar's underscore feature, which overprints with this character,
you change all F’s into E’s and produce a rather ugly result. So | used
the ribbon toggle, »Y to turn on and off the underscore feature of the
printer. (On the later model 85105, the underscore character is
moved down so that it looks all right, and | used the ~Y to switch in
and out of italics, which are provided on that model of the printer.)

The following patches implement these changes, which work on
both the Z-100 and the Z-150:

O75E PSHALF 09 1B 54 31 32 0D OA 1B 41
076B PALT 01 OE Elongated characters

Half-line space
(~A)

o770 PSTD 01 OF Standard-width characters (*N)
O77TF USR1 02 1B 26 Greek font (~Q)
0784 USR2 04 1B 24 1B 4E Pica font (W)
0789 USR3 04 1B 24 1B 45 Elite font (*E)
O7BE USR4 01 1B ESC (~R)
0793 RIBBON 02 1B 58 Underscore on (~Y)
D798 RIBOFF 02 1B 59 Underscore off (~Y)
0790 PSINIT OB 0D 1B 45 1B 24 OF 1B 4C 30 30 30 Reset

Alternate for 85108

0793 RIBBON 03 1B 69 31
0798 RIBOFF 03 1B €9 30

Italies on
Italics off

(*¥)
(23)

Circitlar

Peppy

" Educational Electronic Controlled
¥ Robot Kits From OWL

Medusa

NINE WAYS
TO MOVIT.

Use your mind and a few tools and enjoy
the educational and pure fun benefits of
MOVIT.

Only the choice is difficult. . . Sound
Sensor Controlled models which include
Peppy, Piper Mouse, Medusa and Turnbacker
... Infra-Red Sensor Controlled kits like the
Avoider or Line Tracer. .. Circular, a Radio
Frequency Controlled kit. .. Mr. Bootsman,
our Hand Controlled kit or. .. the incredible
4K Ram Programmable Memocon Crawler.

See your local Heathkit dealer. MOVIT kits
range from $24.95 to $74.95 suggested list price.

owl

OWI Inc. 1160 Mahalo Place
Compton, CA 90220 (213) 638-4732

REMark * October = 1984

63

It may be useful for the new owner of an 8510 with a parallel
interface to know that he should set SW1-7 CLOSED to avoid prob-
lems with line spacing using certain of the ZDS system programs
which send LF CR rather than CR LF.

Alan T. Moffet
4848 Glenalbyn Drive
Los Angeles, CA 90065

still Bugged With HT
Dear HUG:

L. T. Scotney (April 84) and Glenn F. Roberts (July 84) both “Bugged
HUG” about the horizontal tab (HT) problem when using the H/Z-
100 to send graphics to a printer. Here we give a solution for parallel
printers.

Parallel printing is controlled by the MC68A21 Parallel Interface
Adapter on the main circuit board. This chip is described in the
Hardware Manual in the appendix, D.56. The situation is somewhat
complicated, since the same chip is also used to interface the light
pen and the vertical sync signal from the video board as described in
the Hardware Manual, 2.17. The trick is to operate the parallel port
without wrecking the vertical sync signal.

A listing of the Bios file, BCHRIO.ASM contains the routine
CHRFOD—PAR which controls the MC68A21 during parallel print-
ing. This routine contains clear remarks describing each step. The
same routine could be implemented in languages other than Assem-
bler.

We are attaching a listing of a BASIC subroutine that executes the
routine. Although we do not disable interrupts as does the Assembler
routine, this BASIC version does faithfully transmit all ASCII codes to
the printer. The routine was tested by printing 0 to 255 on an Epson
FX80 operated in the Hex Dump mode.

Sincerely,

Don Vickers

Box 1, Parnassus Station
New Kengsington, PA 15068

10000 'SUBROUTINE CONTROLS MC6BAZ1 PIA

10010 ¢

10020 'December T,

10030 '

10040 'BY Don Vickers

10050 'Box 51, Parnassus Station

10060 'New Kensington, PA 15068

10070 '(412) 339-7553

10080 !

10090 ¢

10100 'The HZ-100 computer evaluates
HORIZONTAL TAB [CHR$(9)]

10110 'internally and outputs appropriate
number of spaces

10120 '[CHR$(32)]. Therefore CHR$(9) must be
intercepted and

10130 'output directly to the Centronix parallel
interface. This

10140 'is a BASIC subroutine that will ocutput
directly to the

10150 'Centronix port.

10160 '

10170 'A = ASCII VALUE OF CHARACTER TO BE PRINTED.

10180

10190 STAT = INP(&HE2) AND 3

10200 'status = value of two low-order bits of port B,

10210 IF STAT < 2 THEN PRINT "PRINTER ERROR!":END

10220 'because error bit is low.

1983

10230 IF (INP(&HE2) AND 3) > 2 THEN PRINT "PRINTER BUSY"
:GOTO 10230 'because busy bit is high.

10240

10250 '

10260 QUT &HE2,A 'output full byte to B
The two low—order bits

10270 'won't matter since PIA control word sets
them for input.

10280 '

410290 TEMP = &HAC 'This is the bit pattern to adjust the

10300 'high-order six bits for values to maintain
operation of

10310 'VERTICAL RETRACE and LIGHT PEN. The two low
order bits

10320 'are sel to zero,

10330 'ATEMP = A AND 3 'Mask out all but two low
order bits of

10340 'byte.

10350 AY = TENP OR ATEMP 'Now tack two low order
bits onto high-

10360 'order 6 bits of A port.

10370 °*

10380 OUT &HEOD, AY 'Output composite byte to port A.

103¢0 '

10400 STROBE = &HFB AND AY 'Drive bit 3 of
composite byte low.

10410 °'

10420 OUT &HED,STROBE 'Now output so as to
strobe printer.

10430 '

10440 NORM = STROBE OR 4 'Set bit three high.

10450 °*

10460 OUT &HEO,NORM 'Output to reset printer strobe.

10470 '

10480 RETURN

Unsolicited Final Word!
Dear HUG,

Recently, you have run some letters on the virtues and vices of
various word processors for the Z-100. | haven’t ever written an
“unsolicited testimonial,” but | have seen so much junk that passes
for wordprocessing software, that I'd like to put in a good word for
Final Word. | have been using it for about three months now, and it’s
the closest thing to satisfying my word processing needs that | have
ever seen. First, it seems to have been designed to fill a multitude of
needs, not just to function as a business-oriented word processor. |
bought it because it automatically formats numerous footnotes, but |
find that it has numerous other capabilities. By sacrificing the
“what-you-see-is-what-you-get'” philosophy of word processing, it
permits much greater flexibility of formatting. Readers familiar with
“runoff”” and similar programs, which permit embedded formatting
commands, will know how this capability can make word proces-
sing tasks easier. And those who want to stick with on-screen format-
ting can have that, too.

It permits the construction of templates and forms of various kinds,
and of “personalized’ form letters which enable you to slightly alter
aform letter by using variables and case statements. It can automati-
cally chain files together, and accept console input to the printer
during printout time. In addition, it supports numerous printers in-
cluding the NEC 8023, the Diablo, IDS, Okidata, Qume,
Mannesman-Tally, and Epson (most with two or three different fonts,
including superscripting and true proportional spacing). Or you can
fully define your own printer using a comprehensive configuration
program. There is also a terminal configuration program that permits
you to specify color and other attributes (cursor, for instance) on your
Z-100, as well as a program to permit you to map your function keys
on the Z-100. In addition, there are windows, numerous buffers,
highlighting, undelete, and so forth. And any feature which might be

64

REMark * October *+ 1984

irritating (automatic saves, for instance) can be disabled. Aside from
the infinite line length permitted by Watchword, | have never seen a
feature advertised for another program that was not easily achievable
with Final Word.

Its documentation is excellent, and when | called the help number
listed in it, the response was prompt and effective. Of course, com-
plexity has its costs, and this program’s drawbacks are that its control
sequences are three, instead of the normal two, keystrokes, and the
simple problem of trying to remember how to run such a compli-
cated program. But these problems are mostly overcome by the
key-definition feature. Another problem is puzzling -- the Z-100
function keys 9 through 12, when shifted, produce a two-character
control code, and Final Word only accepts one-character codes, so
shifted function keys 9-12 do not work. (But Final Word has ways of
overcoming this too, by making use of a second ““escape’” character
which can remap any key on the board.) One personal problem |
have encountered is that its so tempting to tinker with its configura-
tion in order to fully “customize’ the program, that | have spent too
much time playing with the program and not enough time writing. |
continue to find nice features that | might find a use for someday.

On another matter, | recently ordered HUG's Keymap program and
it's a real bargain, but | have been unable to get the “alternate
character” feature to work or to get shifted {12 to work. Isita bugin
the program or my machine or me?

Yours truly,

Joe Riehl

The Round Table

South Central College English Assoc.
USL Box 40022

Lafayette, LA 70504

Update on ZDOS “CRTSAVER”

In the July/84 REMark (Volume 5, Issue 7), Frank Clark wrote an
article called ““Advanced Assembly Language Programming.”” This
article included an assembly source program called “CRTSAVER"”
forZDQS. This program, as written, has a couple of flaws. The major
flaw exists with interrupts at program initialization which can cause
system crashes. Interrupts are not locked out between the setting up
of the programs interrupt vectors and the setting of the addresses for
the old (chained) interrupt. If one of these interrupts happen just
before the chained address is stored, then it will be vectored outto no
where! System crash or hang!

To remedy this, | suggest the following changes. Insert an “STI”
instruction just after each of these three instructions:

MOV NXT_CRT+2,.ES
MOV NXT_KB+2,ES
MOV NXT_TM+2,ES

Then remove the ““STI” instruction toward the end of the program
(just before the “POP DS instruction). This will keep interrupts
locked out until after the chained interrupt addresses have been
stored.

Another, less fatal problem exists in the timer countdown routine. the
“AX" register is used for decrementing the timer. At this point, the
contents of the “AX’’ register is undeterminate. The instruction after
the tag “INT—TM:"" should have read:

SUB CS:TIMER.1 ; Countdown

The constant of one (1) will cause a timeout of no keyboard or crt
activity for a little over ten minutes and blank the screen. This

HEATH/ZENITH 88, 89, 90 PERIPHERALS

16K RAM EXPANSION CARD

disk 1/0 interface cards.

Field refiabllity record exceeding J years

Expand your H/Z 88, 89 RAM Memory to 2 FULL 84K and begin using larger
and more powerful programs with our 16K RAM card
Fully compatible with: Magnolia Microsystems and COR CP/M and

Featuring: Complete instalfation instructions = Mounting bracket = 0 day warranty

Only $65.00 Shipping & Handling $5.00

PORT SERIAL

2 CARD ——— /0
/3 PORT PARALLEL

. .. not your typical vanilia-flavored serial
and parallel interface. . "

Your H/Z B8, 89, 90 can now directly connec! and
operate EPSON, 1DS, ANADEX, GEMINI, SILVER REED,
NEC, SUPER 5, PROWRITER, OKIDATA. and many more
line printers using CENTRONICS style paraliel inter-
tace with our 2/3rds, 2 port serial, 3 port parallel interface card. Or you may use all 24 digital
lines in various configurations of input, output, or bidirectional modes for industrial control or
data sampling
Features:
2 Serial Ports Supparting Ring Input, and External Clock 3 Parallel Ports, 24 Total Digital
Input/Output Lines + Fully Compatible with All Models of H/2 88, 89, 90 using Heath/Zenilh
CP/M ar HDOS = Now Supporting CP/M Version 2.2 .04 » Choice of Centronics Ling Prinfer
Support Soltware for the CP/M or HDOS Operating Systems = Reduced Computer Bus Loading
and Chip Independent Desmn

Complete with i D . 90 Day Warranty, Two Serial Cables and
a Farallel Cable Internal to the Computer
Price $199.00 Second Operating System Driver $25.00

Shipping & Handling $10.00

REAL TIME CLOCK
You will be able 1o perform lime and date stamping lor
point of sales software, and bulletin board software o
perform lime studies as weil as real lime data sampling
with our REAL TIME CLOCK. This peripheral card is a
perfect companion to our 2/3rds card for industrial
control and data sampling. STOP WATCH time study and
alarm demonstration software Is included for either the
CP/M or HDOS operating systems. You will be able to
view the currenl dale and lime on screen conlinuously
or simply listen to an audible beep every filteen minutes
and the hour chimed or disable the clock entirely at your
option
Features:
 True 1/0 Addressing, Not Memory Mapped » User Selectable Address » Rechargeable Batlery
Backup Using Commonly Avallable Batteries » (nstallable on the Lalt or Right Side of the Computer
(Left side operation requires our /D expansion module.) = Month. Day, Year, Hours, Minutes,
Seconds, 1/10°s, 1/100°s and 1/1000's of Second Accuracy Interrupt Capability Based on
Tenths of Seconds, Seconds, Mlnurss. Hour, Day, Week or a Specilic Date and Time » Choice aof
CP/M or HDOS Operating System Si Driver and alion P

Price 8105 .00 with Batteries $89.00 wlthout Batteries
5.00 Software for Second Operating System

PRICES ARE LESS SHIPPING AND TAX F RESIDENT OF CALIFORNIA
MAIL ORDER: 12011 ACLARE ST., CERRITOS, CA 90701 (213) 924-6741

HODOS is a reg. trademark of the Heath Co. CP/M is a reg. Irademark of Dighal Research

Shlppmg & Handling $5.00

ta systems

TECHNICAL INFO/HELP: 8575 KNOTT AVE., SUITE D, BUENA PARK, CA 80620 (714) 952-3930 SERVICE CENTER
TERMS AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE — VISA AND MASTER CARD GLADLY ACCEPTED

REMark * October + 1984

65

constant can be increased if a shorter timeout isdesired (i.e.: *“5" will
take about 5 minutes, and 10" will take about one minute). | prefer
the 5 minute timeout myself.

After making these alterations to the program, | have had no further
problems. | have included the program in my “AUTOEXEC.BAT" file
so the CRTSAVER is loaded at boot time. Thanks go to Frank for this
very useful routine. This program will, without doubt, extend the life
of my CRT! It could yours, too.

Jesse R Luckett
SPERRY Corporation
1704 Longacre Terrace
Indianapolis, IN 46227

Reply from Frank Clark

The suggestion concerning the possible problem with interrupts
appears valid. It is interesting to note that after a year of constant use
and several months of testing by over a dozen people that the
problem has never been known to occur. | would agree that it is
probably a good idea.

The second suggestion concerning the use of a constant instead of
the AX register is based on a false assumption. As a matter of fact the
AX register is initialized by the BIOS with the number of hundredths
of a second since the lasttime the software interrupt was generated. (|
apologize for not mentioning this fact in my article.) Remember that
these are software interrupts not hardware interrupts. Using a con-
stant will cause considerable fluctuation in the actual amount of
delay, since the timer software interrupt will not always occur regu-
larly. This is particularly true when the hardware interrupts which
lead to the software interrupt are disabled for relatively long periods

The Software Toolwoérks presents:

BUDGETING, ACCOUNTING .
TAXES... ARRGH !

THIS 1S MYCALC”, FREDDIE

TWENTY THREE HELP SCREENS! This IS EASY,
| MEAM MY BUDSET'S ALMOST DONE.

NICE WORK, FREDDIE.

MYCALL 15 $59.95.
IT'S AVAILABLE FOR CP/M (R)AND
HDOS (64 K) AT MOST HEATH,/
IENITH DEALERS. WRITE
ORCALL FOR A FREE 41 PRODUCT

of time as they are when the floppy is used heavily.

I appreciate the enthusiasm concerning this program. Thank you for
your comments.

Expresses Righteous Indignation..
Dear HUG;
Re: Inside Microsoft Basic, D. D. Dodgen; REM Vol. 5, N 8

| am writing this letter in righteous indignation over one of the
concepts emphasized in this article on MBASIC. While he did an
excellent job in presenting the method of internal storage of the
tokens used in MBASIC, his emphasis on the minimizing the storage
requirements is one hundred and eighty degrees out of phase with
what one wants to emphasize in the teaching of coding in the BASIC
language today. Compression of data was a very important concept
in the days of “‘Steam Powered’” computers. When 4K was consi-
dered a lot of RAM, you did have to worry about what you were
storing. With the reduction in cost of storage, both in RAM and in
secondary storage, emphasis should be first place on good prog-
ramming style and readability by peeple rather than storage minimi-
zation. The emphasis on assigning more than one statement to a line
number can create many problems.

First, let us look at the advantage of assigning more than one state-
ment to a single line number:

1. It saves a minor amount (5 bytes) of storage per line number.
2. It presents more source statements to a page (screen or paper).

A
The disadvantage of multiple statement lines are:

1. Multiple statement lines are much less readable to human beings
than single statement lines. For the computer to read a program all
that is needed is that the source program obey the rules of syntax
(there is a tax on everything) for the particular language being used. It
is much more difficult for the human to separate the concepts used in
each statement when they are strung out on a common line. Mr.
Dodgen actually places each statement on a different line of the
screen in his printout published with the article, but the form used
does not work on the version of MBASIC that | have (4.82). If | do not
include the “@"" symbol when | wish to continue a logical line on the
next physical line, MBASIC returns to the direct orcommand mode. |
also do not know how much space the “@"" and the additional spaces
will take in RAM. Emphasis should be placed in readability in order
to save time in debugging a program and in interpreting the program
(by a human) at a later date. Look at the listing of the program
“GRAPH.BAS" on Page 64 of the same issue. See how much easier it
is to read. Programming, coding, and debugging time are much
greater today than the cost of storage.

2. The use of multiple statements in a line make interpretation (by
humans) of the error statements much more difficult. In indirect
mode, the error statement makes a reference to the line number. It is
often difficult enough to try and figure out what an error statement
meant when there is only one statement per line. It is even more
difficult to determine which statement it refers to in a multistatement
line.

3. The same comment can be made when using the TRACE (TRON -
TROFF) routines. The Trace routine only prints out the line number
as the program is run -- not the statement number.

4. Even with MBASIC's edit routine it is much more difficult to
modify a statement in a multistatement line than in a single statement
line. There is also the chance of accidentally modifying the wrong
statement in the line.

5. Similarly, it is more difficult to add a statement to a program.

66

REMark + October + 1984

6. It is also more difficult to delete a staement from a program.
7. Much more care must be taken in providing handling points for
GISUB, GOTO, ERR, and ERL procedures.

Mr. Dodgen also emphasizes the minimization of the ASCII state-
ments used in prompts and in REM statements. The emphasis on the
people readable items in a program should be clarity and not the
saving of disc or RAM space. It makes little sense to save the cost of a
$3.00 diskette when you later cannot remember what you meant by
a prompt or comment. Also, the deleting of REMs before the storage
on permanent medium is poor practice. The remarks are mainly
there to help the user interpret the program at some later date. With
BASIC’s limited variable naming ability makes a glossary of variable
names at the start of a program a very useful item. The inclusion of
nul remarks (REM with no following text) to separate the blocks in a
BASIC program will also make the program more readable. The
storage of the complete program, including the comments, on the
permanent medium is most important for later study both by the
original programmer and the future user.

Again to close, programming, coding, documenting, debugging, and
updating costs (commercially or in terms of your hobby time) are
much greater than the cost of storage. Making a program as readable
to humans as it is to the computer should be a major goal of all
involved with the computing process.

Kenneth Mortimer PE
352 Green Acres Drive
Valparaiso, IN 46383

GEMINI Options Exposed!
Dear HUG,

I Recently acquired a GEMINI 10X printer, and wished to run it with
my H-89 with HDOS out of the RS-232 port.

GEMINI Options: (W/Serial busy)

DIP Sw Jumper Conn
1-off S-1 A-C
2-off S-2 A-C
3-off §-3 A-C
4-off S-4 A-C

5-off S-5 A-C
6-on (1200 Baud) 5-6 A-C
7-off (1200 Baud) S-7 A-C
B-off (1200 Baud) S-8 A-C

A modified cable is needed to connect the Gemini serial port to the
“LP port (340Q) of the H-89:

Cemini RS-232 H-89

S|

B = 0N O WU AW —
N
)
'S:'_onwc\m-hwm-

1
0
H-89 setup:
1. ref CHAP 1, HDOS SYSTEM CONFIGURATION -- Step 8 -- Page
1-34, 35 configure user disk with LPH.DVD
2. ref CHAP 2, HDOS GENERAL OPERATION -- Page 2-45 to
establish input/output (1/0) configuration utilize SET command:
>SET LP:HELP(CR) provides a menu similar to those on table F, G, or
H.
>SET LP:BAUD 1200(CR) programs the H-89 to operate at 1200.
>SET LP:LENGTH 60(CR) programs the H-89 for a page length of 60
lines per page.
>SET LP:PORT 340Q(CR) programs the H-89 to output copy to port
340Q.
3. ref CHAP 6, BASIC, A SIMPLE TEST PROGRAM -- Page 6-78 -
“Using a line printer with Basic”” has helpful information.

This information will help to get the printer to copy, and a lot will
depend on the program (software) prompts to utilize many of the
Gemini’s features.

Sincerely,

Charles W. Wilson
W. 3819 Weile Ave
Spokane, WA 99208-4845

Changing your address? Be sure and let us know since the software catalog and
REMark are mailed bulk rate and it is not forwarded or returned.

&:CUT‘LDNGTHISUNE e e e ==

HUG MEMBERSHIP RENEWAL FORM

HUG 1D Number:

Check your ID card for your expiration date.

IS THE INFORMATION ON THE REVERSE SIDE CORRECT?
[FNOT, FILLIN BELOW.

Name

Address

City-State

Zip

REMEMBER - ENCLOSE CHECK OR MONEY ORDER
CHECK THEAPPROPRIATE BOX AND RETURN TO HUG

NEW
MEMBERSHIP RENEWAL
RATES RATES
US DOMESTIC $20] $17 (O
CANADA $22 $19 [J USFUNDS
INTERNAT'L* $30 [$24 [] USFUNDS

* Membership in France and Belgium is acquired through
the local distributor at the prevailing rate.

Index of Advertisers

Analytical Products 7
Apogee Software 42
Controlied Data Systoms, NG wsvus s arsvsmiasissspmi i 42,55
DRISOR s smrmrmnmmnai v AT s 43
Generic Software 10
Headware 43
Intuitive Logic 62
MPI .20
Mako Data Products 62
Microservices 55
Mockingbird Data Systems 24
Newline Software 4

New Orleans General 40
North Coast Intelligence Inc. 62
Northwest Computer Algorithms 62
owl 63
Paul F. Herman . .19
Secured Computer Systems 65
Software Support 44
Software Toolworks 61,66
Software Wizardry 2
Technical Micro Systems, Inc. 52
Veritechnology 8,56

Heath /222

Users’
Group

Hilltop Road

Volume 5, Issue 10

POSTMASTER: If undeliverable,
please do not return.

BULK RATE

U.S. Postage
PAID

Heath Users’ Group

P/N 885-2057

	REMark_volume5_issue10_1984_Page_01
	REMark_volume5_issue10_1984_Page_02
	REMark_volume5_issue10_1984_Page_04
	REMark_volume5_issue10_1984_Page_05
	REMark_volume5_issue10_1984_Page_06
	REMark_volume5_issue10_1984_Page_07
	REMark_volume5_issue10_1984_Page_08
	REMark_volume5_issue10_1984_Page_09
	REMark_volume5_issue10_1984_Page_10
	REMark_volume5_issue10_1984_Page_11
	REMark_volume5_issue10_1984_Page_12
	REMark_volume5_issue10_1984_Page_13
	REMark_volume5_issue10_1984_Page_14
	REMark_volume5_issue10_1984_Page_15
	REMark_volume5_issue10_1984_Page_16
	REMark_volume5_issue10_1984_Page_17
	REMark_volume5_issue10_1984_Page_18
	REMark_volume5_issue10_1984_Page_19
	REMark_volume5_issue10_1984_Page_20
	REMark_volume5_issue10_1984_Page_21
	REMark_volume5_issue10_1984_Page_22
	REMark_volume5_issue10_1984_Page_23
	REMark_volume5_issue10_1984_Page_24
	REMark_volume5_issue10_1984_Page_25
	REMark_volume5_issue10_1984_Page_26
	REMark_volume5_issue10_1984_Page_27
	REMark_volume5_issue10_1984_Page_28
	REMark_volume5_issue10_1984_Page_29
	REMark_volume5_issue10_1984_Page_30
	REMark_volume5_issue10_1984_Page_31
	REMark_volume5_issue10_1984_Page_32
	REMark_volume5_issue10_1984_Page_33
	REMark_volume5_issue10_1984_Page_34
	REMark_volume5_issue10_1984_Page_35
	REMark_volume5_issue10_1984_Page_36
	REMark_volume5_issue10_1984_Page_37
	REMark_volume5_issue10_1984_Page_38
	REMark_volume5_issue10_1984_Page_39
	REMark_volume5_issue10_1984_Page_40
	REMark_volume5_issue10_1984_Page_41
	REMark_volume5_issue10_1984_Page_42
	REMark_volume5_issue10_1984_Page_43
	REMark_volume5_issue10_1984_Page_44
	REMark_volume5_issue10_1984_Page_45
	REMark_volume5_issue10_1984_Page_46
	REMark_volume5_issue10_1984_Page_47
	REMark_volume5_issue10_1984_Page_48
	REMark_volume5_issue10_1984_Page_49
	REMark_volume5_issue10_1984_Page_50
	REMark_volume5_issue10_1984_Page_51
	REMark_volume5_issue10_1984_Page_52
	REMark_volume5_issue10_1984_Page_53
	REMark_volume5_issue10_1984_Page_54
	REMark_volume5_issue10_1984_Page_55
	REMark_volume5_issue10_1984_Page_56
	REMark_volume5_issue10_1984_Page_57
	REMark_volume5_issue10_1984_Page_58
	REMark_volume5_issue10_1984_Page_59
	REMark_volume5_issue10_1984_Page_60
	REMark_volume5_issue10_1984_Page_61
	REMark_volume5_issue10_1984_Page_62
	REMark_volume5_issue10_1984_Page_63
	REMark_volume5_issue10_1984_Page_64
	REMark_volume5_issue10_1984_Page_65
	REMark_volume5_issue10_1984_Page_66
	REMark_volume5_issue10_1984_Page_67
	REMark_volume5_issue10_1984_Page_68
	REMark_volume5_issue10_1984_Page_69

