: \I..R
. lssue 21 E '
.y October
v . 1981

r
ey
‘f.

M

=N ; ‘ d
I

K

Official magazine for users of Heath computer equipment.

-
on the cover. . ..
THE TOE!

Photo by: K. Andersen

.
/

on the stack

+CAT

Anyone Can Build a Computercoiuunnn 3
Yo! Ho! Ho! and a Bottle of Rum! 3
Heath/Zenith on Foreign Shores 3
John R. Beran

Correction to “Losing Weight” 0.0 4
Making Neighbors out of HDOS and CP/M 5
MBASIC to Machine Code Link Revisited 6
More Changes to HDOS 2.0 Bootupcccuuue. 11
Tiny Pascal Patch cccassavssvivivivin s s wavies 11

Binary Search Routine for MBASIC
Random Disk Filescoiiiiiiiiiiininnennnnnas 12
William N. Campbell, M.D.

CPIMITT oo onisivesnien o ias ie vl ws sunei desa s 14
New HUG Softwarecociiiiiiiiiiiniinnn 16
HUG Products List ...cc.vicvminmsvscisnnsisssvsssss 16
Interface Your ET/ETA-3400 to the SS-50 Bus 18
VARPTRIin MBASICovvvvvvivnnnnnrnnrnnnnnns 023
Heath Related Productsccoiiiiiiinniinnen 27
HUGBBHelpsand Hintscc0iiiiinninnnn, 28
Local HUG NeWscvuiinernnnninnrnnnsnannnnnes 29
Buggin! HUG aissinmmisiasmmms et issssmasna g 30
BLACKMA o im0 esisersin e s e s s 416 s s s amomis:s 32

—

\- J

“REMark” is a HUG membership magazine pub-
lished ten times yearly. A subscription cannot be
purchased separately without membership. the
following rates apply.

U.S. Canada &
Domestic Mexico International

$20 US FUNDS $28
$17 US FUNDS $22

Initial $18
Renewal $15

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is ac-
quired through the local distributor at the prevail-
ing rate.

Back issues are available at $2.50 plus 10% hand]l-
ing and shipping. Requests for magazines mailed
to foreign countries should specify mailing
method and add the appropriate cost.

Send payment to:

Heath Users’ Group
Hilltop Road
St. Joseph, MI 49085

Although it is a policy to check material placed in
REMark for accuracy, HUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in RE-
Mark, which describe hardware modifications, are
not supported by Heathkit Electronic Centers or
Heath Technical Consultation.

HUG Manager and Editor.......... Bob Ellerton
Assistant Editor and

Software Developer........... Patrick Swayne
HUG Secretary Nancy Strunk
Software Developer Gerry Kabelman
BUG:BE .o enmammmisnimms e szm Terry Jensen

Copyright © 1981. Heath Users’ Group

HUG is provided by Heath Company as a service to
its members for the purpose of fostering the ex-
change of ideas to enhance their usage of Heath
equipment. As such, little or no evaluation of the
programs in the software catalog, REMark or other
HUG publications is performed by Heath Com-
pany, in general and HUG in particular. The pros-
pective user is hereby put on notice that the prog-
rams may contain faults the consequences of
which Heath Company in general and HUG in
particular cannot be held responsible. The pros-
pective user is, by virtue of obtaining and using
these programs, assuming full risk for all consequ-
ences.

SeREMark

$-REMark « Issue 20 « 1981

Anyone Can
Build a Computer

Several years ago, I had the pleasure
of meeting Nino D'Agostino. He's a
regular Heathkit customer. He has built
small kits and large. The largest was
the GR-2001 Color Television, so it wasn't
a surprise when he bought the H-8
computer. The surprise to most people
is that Nino is totally blind! He has
a little trouble reading the color code
on resistors, so he does need a little
help, but I imagine some day we'll solve
that problem too.

Using the computer is no problem to him.
He uses a cassette looking device, with
which he inserts his fingers in a slot.
A lens is attached on a short cable to
the machine. When Nino places the lens
to the C.R.T., and holds it on a letter,
small pins in the slot vibrate under his
fingers. It doesn't come out in Braile.
What the lens sees, is the shape the pins
vibrate. So Nino had to learn how to
read print! Can you imagine not knowing
what your name looks like?

Nino has an H-8, H-19, H-17, two drives,
and the CAT modem. Now he has purchased
a Votrax and is currently learning how
to use it. Now when he fires up his
computer it talks to him! It has opened
new doors for Nino, and he's having a
ball.

Thanks to Larry Bollman of Heath's Factory
Computer Service Department for this
information about Nino. Nino is obviously
an individual with a lot of heart. GOOD
LUCK NINO! From all Huggies and the HUG
staff.

Yo! Ho! Ho! and a Bottle of Rum!

HUG has received many inquiries from the
various local HUG groups concerning the
duplication of the HUG Library for
addition to the software that they can
offer to other members of the local
group. Jim Blake once discussed this
situation in a previous issue of REMark.
The answer, at that time, remained unclear
as to the course of action open to the
clubs throughout the country. Several
of the "locals" have asked that I look
into this situation for a better
definition for their membership. Here
is what I found:

The software offered by the Heath Users'
Group REMAINS THE PROPERTY OF THE
AUTHOR! ~HUG has been given permission

by the respective authors to release this

SREMark « Issue 21+ 1981

software to the National HUG membership
ONLY. This means that HUG software
Cannot be duplicated for any reason
without written permission of the original
author of the particular program. The
release given to the Heath Users' Group
and the information supplied in the
individual membership package indicated
that the original author maintained all
rights to his work.

As the software battle rages, more and
more of the individuals creating user
programs are becoming increasingly “"picky"
about the work they wish to release to
the world. Fortunately, our membership
has contributed a wealth of programming
knowledge for mere mention of their
efforts in REMark knowing that they are
supporting the different areas of
responsibility of the National HUG. Their
programs are being sold at a nominal
charge to support the continued
development of REMark, the HUG BB, and
HUG itself. For those of you that have
contributed, we can express the deep
appreciation of all HUG members that have
benefitted from your efforts.

HUG can not give authorization to
duplicate the HUG Library. Further,
duplication of the membership library
or the software that has been developed
by loyal HUGs all over the world may be
considered SOFTWARE -------

Heath/Zenith
on Foreign Shores

Did you know that there has been pixel

graphics on the '89' for one and a half
years? Did you know that there are some
'89' systems with 160 meqg of on line hard
disk storage? Did you know that there
are many systems with 10 X 10 meg of on
line hard disk storage? Did you know

that there have been 3B0K floppy disks
for the '89' for 6 months. Did you know
that there are character sets for the
'89' and '1l9' that cover all the major
languages in the world, like French,
German, Danish, Norwegian, Swedish,
Italian, Spanish, Hebrew and even Arabic
22272

Well now you know!

Did you know that there is a three port
parallel Centronics Compatible I/0 card
for the '89'? Did you know that there
is an eight channel, 12 bit A/D card with
software for the '89'? Did you know that
there is an IEEE interface for the '89'?
Did you know that there is a mod kit for
the '19' and the '89' serial card to
convert from RS-232 to 20ma active and/or
passive? Did you know that there is a
complete EPROM/ROM burning package for
the '89' computer? Did you know that
your Volkswagen was checked at the end
of the production line to see if all was
well-By a 2892?22 (No snide remarks
now!!1!)

is in all the above languages?

Did you know that there is even more!??

Well now that I've caught your attention
I guess it would be a good idea to
introduce myself and then give you all
a little explanation of just what I mean
by all of the above. I'm new to the Heath
Factory but not to Heath, (I've been with
Schlumberger and then Heath for a total
of almost eight years) just back from
four years living and working for Heath
International in Europe. I was talking
to Bob Ellerton (he's the Editor of this
rag) a few days ago when he hit me up
to write an article about "Heath on
foreign shores". 1'd been thinking about
an international section in HUG for quite
some time but I let him think it was his
idea anyway. "Gee Whizz Bob what a great
idea 1!1"

So here I am, trying to think of how to
start, for we have so much to talk about.
I guess the first thing would be to let
you all know that there really is a
Heathkit and Zenith Data Systems beyond
the friendly shores of Miami beach,
Boston, and Malibu. Heath has been
operating in Europe for over 18 years
in many countries and in some of the
larger countries there are even Heath
owned stores, some very similiar to the
ones you visit all over the United
States. Currently we have Heath/Zenith
operations in France, Belgium, Germany,
Holland, Sweden, England, and Canada.
At the same time we also have distributors
in Switzerland, Austria, New Zealand,
Australia, Norway, Denmark, Italy, Egypt,
South America, the far east, and to tell
the truth I'm running out of breath trying

to name them all. In any case we are
just about everywhere, EVEN CHINA.

Because the computer market is very
different outside the U.S.A. (it's hard
to justify games when everything costs
twice to two and a half times what you
pay for the same thing) the Heath/Zenith
computer products are really put to work.
As an example, with a few changes to the
software and a HP bar code reader going
via a serial I/0 there are now shoe stores
all over France that have a cash register
that looks like (you guessed it!) a WHB89
computer. In Northern Ireland the HS8
system has had some ROM's put in the place
of memory and now runs and operates
complete factories in the area of
process control. The Ford motor company
(English Ford) has the complete factory
and assembly line being controlled by
two H8's, in tandon. If you go to a
dentist in Sweden and the doctor wants
to have a complete medical history of
your mouth he will get it from his handy
89/47 combo. If you are Dutch and under
the age of 16 you will be learning
beginning program theory with an 89/87
system. And, if your country's leader
goes by the name of Margaret Thatcher
and you are a University student learning
beginning to advanced programming; you
will know the '89's keyboard and syntax
in your sleep. In Germany, the newspaper
and magazine you are reading may very
well have had the type set by a Z89 and
I already told you of the Volkswagen.
And, if you are a bullfight enthusiast
in Spain your ticket was printed with
a (no not a TRSXX) '89' system.

To make a long story short (I didn't get
much space this time), we as a family
of Heath/Zenith computer freaks, have
some family ties just about everywhere
in the world. Over the coming issues
of REMark I will tell you much more about
what is being done in other countries
in the areas of work and play, along with
interviews with the people that make it
happen. So until then, "tally ho old
sport".

Correction to
“Losing Weight”

I made a slight boo-boo in my article
"Losing Weight with HDOS 2.0" in REMark
#19. 1In the program listing REDUCE.ASM,
vyou should remove the line LXI SP,42200a,
which is line no. 44. This line resets
the stack before the name of the file
to be reduced is fetched, and if a tic
count occurs before the name is completely
copied, it will be messed up. In a
program this small, there is no need to
reset the stack at all, so just removing
the line will fix it.

Best Regards
John R. Beran

PS:

H-REMark « Issue 21+ 1981

Making Neighbors out of HDOS and CP/M

How often have you found yourself either trying to DBUG a program or %implY run
a program written under both HDOS and CP/M only to find the wrong operating system
installed in your computer? Or, maybe your dream is to have a program that can
be run on either operating system on the same disk for comparison! Well, the
following text explains how you can build a "friendly" disk containing a directory
for both CP/M and HDOS. With a little playing around you will discover some other
very useful reasons for making a CO-RESIDENT CP/M and HDOS DISK!

To understand a little about the two disk structures, let's first take a look at
what must happen on each disk. When you are "building" the HDOS disk, you must
first run INIT which establishes the following on your fresh disk:

DIRECT.SYS, RGT.SYS, and GRT.SY¥S

Using the utility DUMP from HUG, take a look at the disk after the INIT procedure.
You will find that the BOOT information has been written on track 0. Further, HDOS
creates the RGT.SYS at track 1 sector 0, the GRT.SYS at track 14 sector 8, and the
DIRECT.SYS at track 13 sector 0. The remaining portions of the disk are filled
with the ASCII characters "GL" as an alternating pattern to complete the formatting
under HDOS. Now, all of this may seem like wasted print but, you will find it to
our advantage.

Fortunately, CP/M doesn't use any of the tracks or sectors described above for its'
directory. The formatted CP/M is "filled" with E5(HEX) in a continuous pattern
with the directory on five-inch disks appearing at track 3. AH HA! Now we know
that HDOS does not disturb the CP/M directory track (3), at least during INIT.
So, let's see what we can do with this information.

We know that an INITed HDOS disk is filled with "GL" where there is no information
that is used by DIRECT.SYS, GRT.SYS, and RGT.SYS. Therefore, the .irectory track
(track 3) for CP/M is now full of these "GL's". Further, we now know that CP/M
must locate its' directory at track 3 which must contain "E5's". If we were to
somehow write a bunch of E5's to track 3, then by theory, CP/M would then be able
to establish a directory here even if the disk was set up using HDOS. If we carry
this procedure a litte further, we can establish an area (protected) that CP/M can
use and that HDOS will ignore. How do we do this? Easy! First we INIT a fresh disk
then perform the MBASIC program described in FIG. A.

10 CLEAR 300

20 PRINT "THIS PROGRAM FORMATS HDOS DISKS FOR CO-RESIDENT CP/M USE.":PRINT
30 LINE INPUT "ENTER DRIVE TO BE FORMATTED: ";DR$: PRINT

40 IF RIGHTS(DRS,l)<>":" THEN DRS=DRS+":"

50 OPEN "O",1,DR$+"CPM.SPC": REM ---- CPM.SPC IS THE AREA SET ASIDE FOR CP/M
60 FOR I=1 TO 114: REM ---- SECTOR COUNTER

70 PRINT #1, STRINGS (255,&HE5): REM —---- FILL SECTOR WITH 255 HEX E5's

80 NEXT I: REM —---- GET THE NEXT SECTOR

90 CLOSE

100 PRINT "FUNCTION COMPLETED.":PRINT

110 PRINT "ANYMORE DISKS TO BE FORMATTED? <N> ";:A$=INPUTS$(l) :PRINT AS$:PRINT
120 IF AS="Y" THEN PRINT: GOTO 30

130 SYSTEM

FIG. A

S REMark « [ssue 21+ 1981

Let's take a close look at the program and see what will happen. Lines 10, 20,
30, and 40 are designed to be "user friendly" and require little explanation other
than line 30 which selects the drive our INITed disk is installed in. Line 50
begins the real "meat" of the program. Line 50 establishes an HDOS file we are
calling CPM.SPC (CP/M SPACE). Next (line 60), we provide a FOR NEXT loop of 1 to
114 times as a sector counter (more on this later). Line 70 is the important one.
In line 70, we write to the file called CPM.SPC the hex value E5 into each of 255

bytes available in each sector. Then, in line B0 we repeat this write procedure
114 times with the NEXT I statement.

WHY 114 SECTORS YOU ASK?! Well, our new file called CPM.SPC can only occupy an
area up to track 13 of the disk. Track 13 is the area were HDOS will normally place
its' DIRECTORY. Therefore, we must use caution to preserve this track so as to
retain the ability to have both the HDOS DIRECTORY at track 13 and make room for
the CP/M directory which CP/M places at track 3. The 114 sector "CPM.SPC" file
will then be large enough to accomodate CP/M files that DO NOT exceed 20K bytes
of memory.

OK! Now we have created the file called CPM.SPC and we would like to protect this
area from HDOS. Easy! Place the "W" flag on CPM.SPC so that it becomes a portion
of the system. This little procedure is done with FLAGS.ABS and will reserve this
area for CP/M even if you choose to call CPM.SPC by a different name under CP/M.

We can now PIP our HDOS or CP/M files (CP/M not to exceed 20K) to the disk and the
disk is usable by both operating systems.

OTHER ADVANTAGES

One of the other benefits of "building"™ a CP/M disk using the HDOS INIT and our
little format routine is the ability to perform a MEDIA TEST. HDOS performs a
media test using the TEST.ABS routine. This is a definite plus over CP/M as it
does not. Now we have the ability to test media and create a CP/M disk. Remember,
you CAN use the entire disk for CP/M if you desire by simply destroying the
directory track for HDOS. CP/M will not care about the information on track 13
as only its' directory track (track 3) requires the E5's.

Before we terminate this little session, FIG. B is an Assembly Language version
of our BASIC program provided by PS:. (He always likes to do it the hard way.)
Anyway, I hope you will find this information is as useful as I did. EOF: BE

FIG. B

TITLE 'CPMFMT -- CPM DISK FORMATTER'

STL 'BY PATRICK SWAYNE 31-JUL-81'
THIS PROGRAM WRITES A 114 SECTOR FILE CONSISTING
OF OE5H's. IF THE FILE IS WRITTEN ON A NEWLY
INITIALIZED DISK, IT CAN BE WRITTEN ON BY CP/M,
AND CAN BE USED AS A CP/M-HDOS CO-RESIDENT DISK
IF THE AMOUNT OF CP/M DATA IS KEPT TO 20K OR
LESS, OR IT CAN BE USED AS A REGULAR CP/M DISK.

* % % ¥ ¥ ¥

* EXTERNALS

. EXIT EQU 0

.SCOUT EQU 2

.WRITE EQU 5

.OPENW EQU 43Q

.CLOSE EQU 46Q

S$TYPTX EQU 195EH
ORG 42200A

CPMFMT LXI H,0
DAD SP FIND STACK POINTER
MOV A,L
CPI 2000Q DRIVE ENTERED?
JNZ GOTDRV YES, GET IT
CALL STYPTX . .
DB 'No drive specification entered.',BAH
XRA A

SCALL . EXIT

$REMark « [ssue 271+ 1981

GOTDRV LXI
MVI
MOV
CPI
INX
Jz
STAX
INX
DCR
JNZ

GLOOP

* FILL BUFFER WITH OESH'S

XRA
LXI
MVI
MoV
INX
DCR
JNZ

FILL

* WRITE THE

LXI
LXI
XRA
SCALL
JNC
CALL
DB
XRA
SCALL
WRITE MVI
WRLOOP PUSH
LXI
LXI
XRA
SCALL

SCALL
BADWRT CALL
DB
XRA
SCALL

A
H,BUFFER
B,0ESH
M,B

H

A

FILL

FILE

H, NAME
D, DEFALT
A

. OPENW
WRITE
S$TYPTX
'Unable to open
A

.EXIT
C,114

B

B, 256
D,BUFFER
A

.WRITE
BADWRT

B

C

WRLOOP

A

.CLOSE
BADWRT
$TYPTX

STORE DRIVE HERE
MAX CHARACTERS IN DRIVE NAME

SKIP OVER SPACES

STORE CHARACTER

GOT ALL OF NAME?
IF NOT, GET MORE

A = COUNT

POINT TO BUFFER
B HOLDS DATUM
FILL THE BUFFER

GET FILE NAME

USE CHANNEL 0

file.',8AH

WRITE 114 SECTORS
SAVE COUNT

WRITE ONE SECTOR
DATA IS HERE

WRITE THE SECTOR
RESTORE COUNT
FINSIHED?

IF NOT, CONTINUE

CLOSE THE FILE

'Operation completed.',8AH

A
.EXIT
STYPTX

'Unable to write file.',B8AH

A
- EXIT

* BUFFERS AND STORAGE

NAME DB
DEFALT DB
BUFFER DS

END

YeREMark = Issue 27+ 1981

'CPM',0
'SY0spC'
256

CPMFMT

MBASIC to Machine Code Link Revisited

(HDOS AND CP/M)

In REMark Issue #l12 we published an article called "MBASIC to Machine Code Link",
in which we presented a way to link from Microsoft BASIC (under HDOS) to a machine
code program (.ABS file). However, since that article made no attempt to explain
what was going on, and since there is a possible "bug" in the routine presented
then, I will do it all over again. Also, since that article came out, we have
discovered how to do the same thing in CP/M, which I will present here.

First, let me explain what we mean by "link" in this article. I am not referring
to the process of linking two or more relocatable machine code files together to
make one runnable program, but rather the process of causing a program to load and
execute another program, sort of like CHAIN or RUN in BASIC, except that the second
program is in machine code.

PART ONE -- HDOS

In HDOS, there is a built-in system call (.LINK) that can accomplish this. 1In
assembly language, it is used like this:

LXI H,NAME POINT TO FILE NAME

SCALL .LINK LINK TO THE FILE

JMP ERROR COULD NOT LINK
NAME DB 'SY0 : FNAME. EXT', 0

The file name descriptor, "SYO:FNAME.EXT", can contain any legal device name, file
name, and extension. You can use .LINK to go from an MBASIC program to a machine
code program if you make a USR function that points the HL register at an
appropriate file name descriptor, and calls the HDOS .LINK function. This is what
the routine in REMark #12 does. The possible "bug" mentioned above is that the
routine does not alter the stack pointer, and since .LINK does not change it either,
the new program is loaded with the stack at where ever MBASIC had it, which could
cause problems. Below is a new routine for linking from MBASIC to machine code
programs which not only sets the stack for you, but is more "elegant" than the old
routine. It was developed by Greg Chandler, a Heath engineer.

2000 ' THESE LINES CAN BE ADDED TO AN MBASIC
2010 ' PROGRAM TO CAUSE IT TO LINK TO A

2020 MACHINE CODE PROGRAM.

2030

2040 FOR I=1 TO 24:READ B9:' READ MACHINE CODE DATA

2050 U9S$=U9$+CHRS (B9) :NEXT I:' MAKE STRING FROM MACHINE CODE
2060 Z9=VARPTR(U9S) :' LOCATE STRING PARAMETERS

2070 X9=PEEK(Z9+1) :' GET STRING ADDRESS LOW BYTE

2080 IF PEEK(Z9+2)>127 THEN@
X9=((127 AND PEEK(29+42))*256+X9) OR &H8000@

ELSE X9=PEEK(Z9+2) *256+X9:" CALCULATE USR FUNCTION ADDRESS
2090 DEF USR0=X9:' SET USR ADDRESS
2100 ' LINK TO THE MACHINE CODE PROGRAM
2110 PRINT USRO ("SYO:SEABATTL.ABS"+CHR$(0)) ;" CANNOT BE EXECUTED"
2120 '
2130 ' MACHINE CODE DATA STARTS HERE
2140 °

2160 DATA &0376,&0003,&0300,&0353,&0043,&0176,&0043,&0146
2170 DATA &0157,&0353,&0041,&0000,&0000,&0071,&0061,&0200
2180 DATA &0042,&0345,&0353,&0377,&0040,&0341,&0371,&0311

I have added comments to the routine to make it easier to follow. The DATA
statements contain the machine code that will be executed by the USR function.
The values of these DATA statements are put into a string (U9$), and VARPTR is used
to get the address of that string, which is used as the address for USRO. The only
strange part of this routine is line 2080. This is to get around one of the
idiosyncrasies of MBASIC. In some cases, if a number will be used as a l6-bit value
(even if it is not an integer type, %), MBASIC will not allow the number to be

SREMark « Issue 271+ 1981

larger than 32767. 1In line 2080, we want to multiply the high byte of the string
address by 256 and add the low byte to produce the complete address. If the result
of the multiplication is greater than 32767, something is flagged internally that
causes MBASIC to refuse to assign the value to USRO (line 2090). But if we AND
off the high bit before the multiplication and OR it back afterwards, MBASIC thinks
everything is OK.

In line 2110, the file name descriptor to be used by .LINK is a string argument
of USRO. MBASIC enters the USR code with the DE registers pointing to three bytes
containing the character count and address of the string. Below is an assembly
listing of the USR code that shows how this information is used.

00001 » THIS ROUTINE IS A USR PROGRAM THAT CAN BE

00002 by INCORPORATED INTO AN HDOS MBASIC PROGRAM TO

00003 * CAUSE A LINK TO A MACHINE LANGUAGE PROGRAM.

00004 bod BY G. CHANDLER, HEATH CO.

00005
000.040 00006 .LINK EQU hoq
042.200 376 003 00007 MLINK CPI 3 IS DATA TYPE STRING?
042.202 300 00008 RNZ RETURN IF NOT
042.203 353 00009 XCHG PUT STRING PARAM ADDR IN HL
042.204 043 00010 INX H SKIP OVER STRING LENGTH
042.205 176 00011 MOV AM GET STRING ADDRESS LOW
042.206 043 00012 INX H
042.207 146 00013 MoV H,M GET STRING ADDRESS HIGH
o42.210 157 00014 MoV L,A HL = STRING ADDRESS
o42.211 353 00015 XCHG SAVE ADDRESS IN DE
042.212 041 000 000 00016 LXI H,0
042.215 071 00017 DAD SP LOCATE CURRENT STACK
042.216 061 200 042 00018 LXI SP,42200A SET STACK TO DEFAULT LOCATION
o4z2.221 345 00019 PUSH H SAVE OLD STACK
042.222 353 00020 XCHG HL = STRING ADDRESS
042.223 377 040 00021 SCALL .LINK TRY TO LINK TO NEW PROGRAM
042.225 3U1 00022 POP H LINK FAILED, GET OLD STACK
042.226 371 00023 SPHL SET IT
o42.227 3N 00024 RET AND RETURN TO MBASIC
042.230 000 00025 END MLINK

Note that the program first checks to see if the A register contains the number
3. This is to make sure that the argument to USRO was a string. Then the address
of the string is extracted and saved in DE. Next, the stack pointer is located
and its value is saved, and the stack is reset to the default HDOS value, 42200A.
The o0ld stack value is pushed onto the new stack, which means that the new program
is actually entered with the stack at 042176, but that is still a safe location.
The address of the file name is returned to HL, and .LINK is called. If the link
is successful, the rest of the code is not used, but if it is not successful the
old stack is retrieved and reset and the program returns to MBASIC. NOTE: If you
use B H BASIC and want to link to a machine code program, you don't have to bother
with the above. To link to SEABATTL.ABS, as in the MBASIC example, use UNFREEZE
"SYO0 : SEABATTL.ABS".

PART TWO -- CP/M

In CP/M there is no .LINK system call for loading and executing one program from
another one, but there is a way to simulate it. You can insert a command line into
the CCP's (Console Command Processor) command buffer, and then jump directly to
the CCP. This method was shown to us by HUG member Marvin Fichter. In assembly,
it looks like this:

;THIS ROUTINE CAN BE USED TO LOAD AND EXECUTE A
;MACHINE LANGUAGE PROGRAM FROM ANOTHER ONE.

LINK:
0000 3A0200 LDA 2 ;GET BIOS PAGE
0003 D616 SUI 16H ;FIND CCP PAGE
0005 67 MOV H,A
0006 2E00 MVI L,0 ;HL = CCP START
0008 E5 PUSH H ;SAVE IT
0009 EB XCHG
000A 1E07 MVI E,7 ;DE = COMMAND BUFFER

HREMark « Issue 21+1981

000C 212500 LXI H, COMMAND ;POINT TO COMMAND

000F OE13 MVI C, (COMEND-COMMAND) AND OFFH
0011 7E LOOP: MOV A,M ;sGET A CHARACTER

0012 12 STAX D s STORE 1T

0013 23 INX H

0014 13 INX D ; INCREMENT POINTERS
0015 0D DCR c

0016 C21100 JNZ LOOP s LOOP UNTIL FINISHED
0019 El1 POP H sGET CCP ADDR

001A E5 PUSH H : SAVE AGAIN

001B 2EB8 MVI L,88H ;HL = COMMAND POINTER
001D 3608 MVI M, 8 sSET IT

001F El POP H ;GET CCP ADDR

0020 3A0400 LDA 4 :GET CURRENT DISK
0023 4F MOV C,A ;PUT IT IN C

0024 E9 PCHL ;JUMP TO CCP

0025 11 COMMAND : DB {COMEND-COMMAND-2) AND OFFH

0026 4D42415349 DB 'MBASIC STARTREK',O0

0036 = COMEND: EQU S

0036 END

The first thing this program does is locate the CCP page address by subtracting
16H from the BIOS (Basic I/0 System) page address. This makes this method possibly
version dependent, because the size of the CCP may be different for different
versions of CP/M. The value 1l6H may be valid only for Heath/Zenith CP/M version
2.2.02. If you are using Magnolia or DG CP/M, consult your documentation for the
size of the CCP and its distance from the BIOS. After the program gets the address
of the CCP, it adds 7 to it to get the address of the command buffer. 1Into this
buffer it places the character count of the command, the command line itself, and
a trailing zero. Then the program adds 88H to the CCP address to locate the command
pointer. It inserts an 8 here indicating that the first command character starts
8 bytes after the start of the CCP. Then the program gets a number representing
the current default system disk from location 4 in low memory and puts it in the
C register. 1If we did not do this, CP/M would assume that the default system disk
is the hardware system disk. Finally, control is transferred to the CCP, which
processes the command line that was inserted and executes the new program.

A machine program can be run from MBASIC in CP/M using the same method. Below is
a routine that will do it.

2000 ' THESE LINES CAN BE PLACED IN A CP/M MBASIC
2010 ' PROGRAM TO CAUSE IT TO LINK TO A MACHINE

2020 LANGUAGE PROGRAM

2030 !

2040 CCP=PEEK(2)-&Hl6:' GET CCP PAGE ADDRESS

2050 BUF=CCP*256+7:" GET ADDRESS OF COMMAND BUFFER
2060 COMS$="STAT *.*"+CHRS$(0):' THIS IS WHAT WE'RE LINKING TO
2070 POKE BUF,LEN(COM$)-1:' PUT COMMAND LENGTH INTO BUFFER

2080 FOR I=1 TO LEN(COMS)
2090 POKE BUF+I,ASC(MIDS$ (COMS$,I,1)):’ PUT COMMAND INTO BUFFER

2100 NEXT I
2110 PTR=CCP*256+&H88:' GET ADDRESS OF COMMAND POINTER
2120 POKE PTR,8:' SET IT

2130 IF CCP>127 THEN
CCP=((127 AND CCP) *256) OR &HB8000

ELSE CCP={CP*256:"' GET CCP ADDRESS
2140 DEF USRO=CCP:' SET USR0 TO CCP ADDRESS
2150 CCP=USRO (0) :°' EXIT TO CCP

Note that the MBASIC routine does not set up the C register with the default system
drive as with the assembly program. This means that you must leave the hardware
system drive as the default system drive. You can still link to programs on other
drives by specifying them in the command line. To run STAT from drive B: in our
example, use B:STAT in line 2060. The MBASIC routine follows the assembly routine
closely, and does not need more explanation than the comments included. We used
the same trick in line 2130 that was used in the HDOS version, in case the CCP
address is above 32767. 1f the attempt to link fails, control is returned to CP/M
instead of to the MBASIC program, as with the HDOS version.

10 SwREMark « Issue 21- 1981

In order to use the linking routine in CP/M, you must protect the CCP trom being

overwritten by MBASIC.

This can be done by setting the top address used by MBASIC

to 1600H bytes below the BIOS (in the case of Heath CP/M) with the /M switch at

start up.
at location 2.

address will be D400H,
For example,

MBASIC /M:&HD400

You can calculate the correct address by using DDT to Display the data
Then use the H command to subtract 16
use the result as the high byte of an even page address.
and if you have 48k,
if you have a 64k system, you would load MBASIC with

(hex) from that value, and
If you have 64k, that
it will be 9400H (Heath CP/M only).

This will set up MBASIC with the CCP preserved.

PS:

More Changes to HDOS 2.0 Bootup

In REMark Issue #16, I presented some
patches for HDOS 2.0 to eliminate the
need to type RETURN after <BOOT> and after
the date prompt at boot-up. In this
article, I will present alternate ways
of doing the same thing. 1If you already
patched your disks using the old methods,
and decide you like these ways better,
you should first use the "old values"
in REMark #16 to restore your disks to
the original configquration.

1. Eliminate CR after <BOOT>

If you boot up a standard HDOS 2.0 disk
and do nothing when the <BOOT> prompt
appears, it will eventually continue the
boot process because there is a time delay
that waits about a minute for you to
respond, then continues without a
response. This patch will shorten that
delay to one or two seconds, eliminating
the need to hit RETURN, but still giving
you the opportunity to type I for Ignore
or C for Check (you have to be fast,
though) . Use DUMP (from 885-1062) to
make the patch.

TRACK 0 SECTOR 2

LOCATION OLD VALUE NEW VALUE
2C 3C 02 or 03

2. Eliminate CR after date

The patch given in REMark #16 caused HDOS
to print whatever date was stored in
memory or on the disk (if no date was
in memory) at boot-up, but not wait for
confirmation or a new date. This patch
eliminates the date prompt altogether
at boot-up if there is a date in memory,
but prompts for confirmation (with RETURN)
or a new date if there is not. This means
that the first time you boot up for the
day- after turning on your computer, you
will be prompted for a date, but every
time you boot up afterwards you will not.

S REMark » Issue 21+ 1981

TRACK 2 SECTOR 0

LOCATION OLD VALUE NEW VALUE
2F CA c8
30 4cC 00
31 31 00

You may want to use this date patch for
your working disks, and the ‘other one
for your gawme disks, since having a
curren. date is not important on them.

Tiny Pascal Patch |

A bug in Tiny Pascal (HUG part no.
885-1086) has been brought to our
attention. This bug, which is in the
TRANSLAT.ABS program, causes a crash if
you try to compile a program on an H8
with the Extended Configuration Option.
Below is a patch that will correct the
problem. You should make the patch
whether you have the Extended
Configuration Option or not. NOTE: HUG
Tiny Pascal has recently been updated
to a newer version. Before you make this
patch, be sure that the "0ld Data" in
your version matches that which is given
here.

File TRANSLAT.ABS

Address 0ld Data New Data
64126 042 315
64127 333 320
64130 054 066
66320 patch 042
66321 area 333
66322 054
66323 021
66324 200
66325 042
66326 031
66327 311

PS:
11

12

Binary Search Routine for MBASIC

William N. Campbell, M.D.
885 Smithbridge Road
Glen Mills, PA 19342

A "Binary Search" is the RAPID acquisition of a desired record from a file starting
with a "key word", and using a familiar algorithm. The algorithm used in a "Binary
Search" is similar to the method we frequently use to "look up a phone number" or
to "find a desired word in a dictionary". The "key word"™ in a mailing list file
might well be a person's last name.

There are 2 prerequisites. The records in the random file to be "searched" must
be "ordered" (alphabetized, in a file of names, for example). And, the records must
be "packed" (there must be NO blank or empty records in the random file). I have
previously presented programs to create and maintain such an ordered, packed random
disk file (such as a mailing list) in REMark, issue 10.

The accompanying 2 programs (BIN64.BAS and BIN85.BAS) written in Heath's MBASIC,
will find ANY desired record in a random, ordered, packed disk file containing 1000
names and addresses in 7 seconds or less. The only difference in the 2 programs
is that BIN64.BAS is "fielded" as 4*64 (4 records in each 256 byte sector) and
contains "Remarks" to explain the logic of the program, whereas BIN85.BAS is fielded
as 3*85 (3 records in each 256 byte sector) and contains no Remarks. BIN64.BAS can
be used "as is" to search a random, ordered, packed disk file created and maintained
as per the random file article in REM, issue 10.

As written, the routine will extract and present for your inspection ALL the records
which "match" (are identical with) the desired "search word". For example, if you
have 5 records in a name and address file, with identical last names (the last names
must be in the first field of each record), then the program will f£ind ALL 5 records
and display them for you.

The programs also print out the absolute position of the record (the record
"number") for your inspection.

10 REM BIN64.BAS BINARY SEARCH ROUTINE - FINDS RECORD(S) USING LAST NAME

20 REM Note file must be alphabetized in ascending order and packed!!

30 REM Takes 7 seconds or less to find any record by last name in 1000 recs
40 REM MUST be random file, fielded as 64*4, last name first in records

50 REM Will find ALL records with same last name.

60 REM Assumed records created as per random file article in REM, issue 10
70 REM

80 CLEAR (1000) :DEFINT A-Z:REM clear string space & declare num var as integers
90 PRINT "Enter complete name of random, ordered file to be searched"

100 LINE INPUT "(Example - SYl:TEST.DAT).....? ";P$

110 OPEN "R",1,PS

120 PRINT:PRINT "Type desired last name to be searched for using ALL CAPS";
130 PRINT ", then hit return.":REM assuming last name all CAPS in file.

140 PRINT "If done type 0 (zero) and return"

150 LINE INPUT "Enter now, then hit Return..... & WaNs

160 IF X$="0" THEN 480

170 IF LEN(X$)=0 THEN 120:REM If hit ONLY Return by mistake, length is zero.
180 X$=X$+"\":REM tack on delimiter - make sure last name ended for search
190 REM Next 5 lines get total # of records in file and put in H

200 FOR I=0 TO 3:FIELD 1,(I*64) AS D$,64 AS R$S(I):NEXT I

210 S=LOF(1l):REM S contains # sectors in file. Next 3 lines find last record.
220 GET #1,S

230 FOR H=1 TO 3:IF ASC(LEFT$(RS(H),1l))=0 THEN 240 ELSE NEXT H:S=S+1:H=0

240 E=H+((S-1)*4):REM H now contains highest numbered record in file.

250 L=1:REM L = lowest and H = highest numbered records

260 N=INT((L+H)/2) :REM divide # of records by 2

SREMark « Issue 21+ 1981

270
280

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

IF N=0 THEN 360 .

GOSUB 460:REM GOSUB examines record # N and puts rec contents 1in ¥$)
PRINT "Upper =";H;" Lower =";L;" Looking at rec #";N:REM educational line
REM next line does matching and makes sure we are comparing last names only
IF INSTR(1,LEFTS(YS$S,LEN(XS$)),X$)<>0 THEN 370:REM if <>0 found matching name!
IF L>=H THEN 360 :REM if L>=H then record not found

IF Y$>X$ THEN 350 :REM Note if Y$<X$ we drop to 340, if ¥Y$>X$ then 350
L=N+1:GOTO 260 :REM reset lower limit, then go back and divide by 2.
H=N-1:GOTO 260:REM reset upper limit, then go back and divide by 2.

PRINT :PRINT MIDS (X$,1,LEN(X$)-1);" is not in file":GOTO 120

REM now we go back, record by record looking for identical last names

N=N-1

IF N=0 THEN 420

GOSUB 460 : .

IF INSTR(1,LEFTS$(Y$,LEN(XS$)),X$)<> 0 THEN 380:REM if still match goto 380,
N=N+1 :REM else end search and print record(s).

GOSUB 460

IF INSTR(l,LEFT$(Y$,LEN(XS)),X$)<>0 THEN 450 ELSE GOTO 120

PRINT :PRINT "Record #";N;"is ";Y$:GOTO 420

S1%=INT((N-1) /4)+1:S2%=N-4*(S1%-1) :REM setup, field, get rec, then Return
FIELD #1, ((S2%-1) *64) AS D$,64 AS R$:GET $1,51%:Y$=R$:RETURN
CLOSE:PRINT:PRINT "Bye-bye!":END

REM BIN85.BAS binary search routine - finds record using last name
REM note that file must be ordered and packed!!!
REM fielded as 85*3 Takes 7 seconds to find any record in 1000 records
REM Will find ALL records with same last name.

REM
CLEAR (1000) :DEFINT A-Z
PRINT:PRINT "Type desired last name in the ordered random file. USE ALL CAPS"
PRINT "If done type 0 (zero) and return"
LINE INPUT "Enter now..... ";X$

IF X$="0" THEN 400

IF LEN(X$)=0 THEN 70

X$=XS+"\"

P$="SY1:FMLST.DAT"

OPEN "R",1,PS$

FOR I=0 TO 2:FIELD 1, (I*85) AS D$,85 AS RS$S(I):NEXT I

S=LOF (1)

GET #1,5

FOR H=1 TO 2:IF ASC(LEFTS$(R$(H),1))=0 THEN 190 ELSE NEXT H:S=S5+1:H=0
H=H+((S-1) *3)

L=1

N=INT ((L+H) /2)

IF N=0 THEN 290

GOSUB 380

IF INSTR(1l,LEFTS$(YS$,LEN(X$)),X$)<>0 THEN 300

IF L>=H THEN 290

IF Y$>X$ THEN 280

L=N+1:GOTO 210

H=N-1:GOTO 210

:R;N{:PRINT MID$ (X$,1,LEN(X$)-1);" is not in file":CLOSE:GOTO 70

IF N=0 THEN 340

GOSUB 380

IF INSTR(1,LEFT$(YS$,LEN(XS$)),X$)<> 0 THEN 300

N=N+1

GOSUB 380

IF INSTR(1l,LEFTS$(YS,LEN(XS$)),X$)<>0 THEN 370 ELSE CLOSE:GOTO 70
PRINT:PRINT "Record #";N;"is ";Y$:GOTO 340

S1%=INT((N-1) /3)+1:52%=N-3*(S1%-1)

FIELD #1, ((52%-1)*85) AS D$,85 AS RS$S:GET #1,51%:Y$=R$:RETURN
PRINT:PRINT "Bye-bye!":END

EDITOR'S NOTE: Doc just called to say that if any of you would like a copy of his
article presented in Issue 10 of REMark, please send him two disks along with return
postage. His disks will have the article and corrections from Issue 11 of REMark.

Send

FREMark «Issue 21+ 1981

your disks to: Doc Campbell; 885 Smithbridge Road; Glen Mills, PA 19342,

13

CP/M??

As members of HUG, virtually all of you are using HDOS and are probably getting
very proficient with its procedures. To many of us (HDOS users), there is no other
operating system that we wish to use because HDOS is such an excellent user oriented
operating system. However, as we look through computer magazines and available
software we realize that there must be something to that ever popular CP/M(tm)
operating system.

Control Program for Microcomputers (CP/M), one of the first sophisticated
microcomputer operating systems, can easily be a part of HDOS users environment
without sacrificing or giving up the operating system that we have grown so fond
(ol 5 It is not the intent of this article to start any kind of battle or
"discussion" of the pros and cons of one system verses the other. CP/M is the most
widely used operating system in the microcomputer world and many of us should become
more aware of it, because sooner or later all Heath users will most likely encounter
this popular system.

Because CP/M is a major part of the microcomputer world, we are going to begin a
series of articles on how to use CP/M. The articles will continue, based upon the
response of you, our users. OQur intent is to familiarize anyone, who is interested,
in learning and understanding more about the CP/M operating system.

At this point, it is assumed that you are aware that an operating system is the
"interface" or "link" between the computer and the user. An operating system must
be able to handle input and output of data from the CPU to any and all peripheral
devices. It must also provide file management, to make that job independent of
the programmers responsibilities. Loading and execution of user programs is the
last of the interfacing capabilities that an operating system must be able to
handle.

CP/M was written to accomplish these functions for 8080, B0B5, and Z80 based
microcomputers. Gary Kildall, the author of CP/M, with the aid of John Torode,
completing the disk controller, created the first CP/M disk operating system. Thus
began the era of CP/M. In 1976, Mr. Kildall started Digital Research and since
that time Digital Research has offered more advanced versions of CP/M and added
related software products to aid the user of the CP/M operating system. The
greatest advantage of the CP/M operating system is not the sophistication of the
system or the availablity of software, but rather the compatiblity between different
manufacturer's microcomputers. Thus the popularity of CP/M.

For those of you who are just beginning in microcomputers, it will be good for us
to stop and explain the different levels of computers and how they interrelate.
You can find these facts in most any computer book, but we will go through them
here so as not to be guilty of leaving someone behind.

The most important step is to show the software hierarchy of microcomputers. The
two systems, CP/M and HDOS, are shown together, NOT as a pro/con comparison, but
to familiarize us that the two systems relate. See CHART ONE.

The intent of CHART ONE is to show the different levels of computer programs and
to imply how each level affects the user of a respective level. The user based
program, the HIGHEST LEVEL, requires the least amount of knowledge to run the
programs. Many of these jobs are "turnkey" operational, which allows anyone, be
it secretary or game enthusiast, to run the programs with little or no knowledge
of computers. The higher level languages of interpreters and compilers, allow a
programmer to be concerned with meeting the needs of a "client" or a specific
program, rather than needing to know what the CPU and operating system are doing
with the "data" that they enter.

The transient program area, the area that includes user programs that directly
support or relate to the operating system in general and the microprocesser in
particular, is the area in which any serious programmer will become familiar. With
microcomputers, most (if not all) of you use many of these transient programs
everyday to do your "normal" operations.

Because of the design expertise necessary to create an operating system, this level
is the lowest level that most of us will ever become familiar, and then only

14 SREMark « Issue 271+ 1981

slightly . We may do patches to or create device drivers for the operating system,
but actually know very little about the operating system. The designipq of the
processors, the LOWEST LEVEL, and writing of the interpreters and compilers are
left to a few select individuals.

k***k*****************

HIGHEST LEVEL { 1) Small Business Package 2) Education Package
User based . .
programs 3) Data Management Systems 4) Mailing Lists, etc.

hkhkkkkhhkhhkhhkhhkhhhhhAhhhhrhhkhrhhhrhhhhhhhhhhkhkhkhhhhhkrhhhhdhhhhhhddhkkhhhhkdkk

Interpreters 1) BASIC 2) FORTRAN
and
Compilers 3) PASCAL 4) COBOL

i**********i

Transient 1) PI1IP 2) ED 3) DDT
rograms of
gystem 4) SYSGEN 5) INIT or FORMAT 6) ASM

************i***t************************itk********i***********************

The 1) Heath Disk Operating System (HDOS)
Operating
Sgstem : 2) control Program for Microcomputers (CP/M)

kkhdkddkdhdhhkhhhkhkkhkkhhhhkhhhhhhhhkhhkhkkhkhkhkhhdkhkkhhkkhkhhhhhhhkkhkhhkhhrdhhhrkdhk

LOWEST LEVEL 1) The CPU (ROM)

AhkkkRkhhhhhhhhhhhhhhrkhhhhhhhhhhkohhhhhhhkhhkkhhhhhhkkhhhrhhhhhhkhkkdkhhhhhhkk

CHART ONE

We may learn about and "touch" the lower levels, however, virtually all the work
we do is an output to the highest level. Even though the programs are written to
help users of that level, doesn't that actually include all of us? Each level has
its purpose and the users to support and aid in contributing to the other levels.
Isn't that what it is all about?

At this point, the general overview of the operating system has been given. If
you have specific questions about the history of CP/M or need more information on
the general use of microcomputers, it is suggested that you research any of a number
of 8080, 8085 or %8B0 microprocessor books.

With that behind us, we will begin with our multi-part guide to using CP/M. We
will assume very little, so as to explain to the very beginner;

PART I: How to get started with CP/M?

The very basics of getting started with CP/M, is not as easy to the beginner as
it may appear unless the beginner has talked to someone who is familiar with the
procedure for setting up the operating system. If you have purchased an H89/289
or H8 system, the chances are that you are unable to run CP/M on your computer.
There is a hardware modification that must be made to your machine to allow CP/M
to be recognized as the operating system. An explanation why CP/M will not run
on a "regular" Heath computer will be given in another PART. What is important
to know, is that you must purchase an "ORG 0 (ZERO)" kit to execute CP/M, unless
your machine has this "Extended Configuration" on it already.

The first step for the beginner is to research his system to find if he does have
the "Extended Configuration Option" on his computer. There is a difference between
the HB9 and the HB, so we will look at each one separately.

The H8 owners have two options to purchasing the "Extended Configuration". You

TO PAGE 28

HREMark « Issue 21+ 1981 15

885-1212 CP/M Utilities I

$ 20.00

This disk is a collection of programs
for the Heath/Zenith CP/M user. It
contains the following:

DISASM -- This is an intelligent 2-pass
8080/7280 disassembler. It makes labels
at all jumps and calls within the program,
and can optionally add "comments" based
on the ASCII value of the data being
disassembled. 1Its output can go to your
console or printer, or to a disk file.
It requires a HEX file for input, which
you can make with the UNLOAD program
described below. You can also convert
an HDOS program to hex using IHEX from
885-1089, transfer the result to CP/M
with HTOC (below), and disassemble it.

UNLOAD -- This program is the opposite
of the CP/M LOAD program. It converts
a COM file to an Intel-type HEX file.
You can use UNLOAD to prepare files for
DISASM, or for making ASCII files from
COM files for transmission over a modem.
The CP/M LOAD program can be used to
convert the hex files back to COM files.

HTOC -- This is an improved version of
the HBCOPY program (for copying files
from HDOS to CP/M) that was released on
disk no. 885-1207. It has been modified
to read 8-inch (single side single
density) HDOS disks as well as 5-inch
HDOS disks. You can specify any drive
B through E for the HDOS disk, and any
drive A through E for the CP/M disk, so
you can copy files from 5-inch HDOS to
8-inch CP/M and vice-versa. Note: the
source for this program is not included
on this disk due to lack of space, but
885-1207 has been updated, and has the
HTOC source.

MPLINK -- This is an H19/H89 version of
a popular public domain modem program.
It features automatic log-on, file save
and transmit, and optional XON
recognition. It makes use of the H19/H89
function keys and the 25th line.

HSORT -- This is a CP/M version of the

16

popular HUG SORTER program from 885-1044.
It reads in an ASCII file, alphabetically
sorts it by lines, and writes the result
to an output file.

ONECOPY -- This is a single drive copy
utility for CP/M. Although Heath CP/M
provides for single drive copying, you
can only do it if your system is
configured for one drive. With ONECOPY,
you can copy with one drive even though
your system has several drives. It allows
you to copy files larger than memory by
prompting you to swap disks.

ERRORS -- This program reports the number
of soft errors on your 5-inch disks since
the last cold boot. It helps you monitor
the condition of your drives.

All of the above programs require CP/M
version 2.0 or higher, and at least 32k
of memory. All programs include source
except DISASM and HTOC.

SOFTWARE UPDATE

885-1078 HDOS Z80 ASSEMBLER $ 25.00
The HUG 280 Assembler has been updated
to a completely new version. It is now
fully compatible with the HDOS 2.0
Assembler, including cross reference
capability and PIC code handling. The
disk includes two versions: one with
octal output and one with hex output.
This assembler uses extended Intel
mnemonics, which means that all 8080
instructions use the same mnemonics as
the Heath assembler, and all Z80
instructions are like 8080 mnemonics.
This allows you to assemble existing
programs with this assembler without
modification. The documentation included
cross references this assembler's
mnemonics to Zilog mnemonics. This
program requires HDOS and at leas 32k
of memory.

HUG Products List

Part Selling
Number Description Price

CASSETTE SOFTWARE (H8 and H88)

885-1008 Volume I Documentation and $
Program Listings (some for H11)
885-1009 Tape I Cassette $ 7.00
885-1012 Tape II BASIC Cassette $ 9.00
885-1013 Volume II Documentation and $ 12.00
Program Listings
885-1014 Tape II ASM Cassette H8 Only $
885-1015 Volume III Documentation and $
Program Listings

S=REMark « Issue 27+ 1981

885-1026 Tape III Cassette $ 9.00
885-1036 Tape IV Cassette $ 9.00
885-1037 Volume IV Documentation and $ 12.00
Program Listings
885-1039 WISE on Cassette H8 Only $ 9.00
885-1057 Tape V Cassette $ 9.00
885-1058 Volume V Documentation and $ 12.00
Program Listings
HDOS SOFTWARE (HB8/H17 or H89 -- 5-inch only)
MISCELLANEOUS COLLECTIONS
885-1024 Disk 1 H8/H89 $ 18.00
885-1032 Disk V H8/H89 $ 18.00
885-1044 Disk VI H8 /H89 $ 18.00
885-1064 Disk IX H8 /HB9 $ 18.00
885-1066 Disk X HB/HB89 $ 18.00
885-1069 Disk XIII Misc HB8/H89 $ 18.00
GAMES
885-1010 Adventure Disk HB8/H89 $ 10.00
885-1029 Disk II Games 1 H8/H89 $ 18.00
885-1030 Disk III Games 2 H8/HB89 $ 18.00
885-1031 Disk IV Music H8 Only $ 23.00
885-1067 Disk XI Graphic Games $ 18.00
.ABS and B H BASIC (H19/H89)
885-1068 Graphic Games (H19/H89) * & 18.00
885-1088 Graphic Games (H19/H89) * § 20.00
885-1093 Dungeons and Dragons Game * $ 20.00
Requires H89 or H8/H19
885-1096 Action Games (H19/H89) * $ 20.00
885-1103 Sea Battle Game (H19/H89) $ 20.00
UTILITIES
885-1019 Device Drivers (HDOS 1.6) $ 10.00
885-1022 HUG Editor (ED) Disk H8/H89 $ 15.00
885-1025 Runoff Disk H8/H89 $ 35.00
885-1043 MODEM Heath to Heath HB8/H89 $ 21.00
885-1050 M.C.S. Modem for H8/H89 $ 18.00
885-1060 Disk VII H8/H89 $ 18.00

SUBMIT, CLIST, FDUMP, ABSDUMP, etc.
885-1061 TMI Cassette to Disk HB only §$ 18.00

885-1062 Disk VIII H8/H89 (2 disks) $ 25.00
MEMTEST, DUP, DUMP, DSM
885-1063 Floating Point Disk H8/H89 $ 18.00
885-1065 Fixed Point Package HB8/H89 $ 18.00
885-1075 HDOS Support Package H8/H89 $ 60.00
885-1077 TXTCON/BASCON H8/H89 $ 18.00
885-1079 HDOS Page Editor $ 25.00
885-1080 EDITX H8/H19/H89 $ 20.00
885~1082 Programs for Printers H8/H89 $ 20.00
885-1083 Disk XVI RECOVER, etc. $ 20.00

885-1089 MACRO, CTOH, and misc Utilities $ 20.00
885-1092 RDT Debugging Tool HB8/H89 $ 30.00
885-1095 HUG SY: Device Driver HDOS 2.0 $ 30.00
885-1098 HB8/HA-8-3 Color .ABS/.ASM $ 20.00
885-1099 HB8/HA-B8-3 Color in Tiny Pascal $ 20.00

PROGRAMMING LANGUAGES

885-1038 WISE on Disk HB/H89 $
885-1042 PILOT H8/H89 $
885-1059 FOCAL-8 HB8/H89 $
885-1078 HDOS Z80 Assembler $ 25.00
885-1085 PILOT Documentation $
885-1086 Tiny Pascal HB8/H89 $
885-1094 HUG Fig-Forth H8/HB89 2 Disks $

HREMark « [ssue 27+ 1981

BUSINESS, FINANCE AND EDUCATION
885-1047 Stocks H8/HB9 $ 18.00
885-1048 Personal Account HB8/H89 $ 18.00
885-1049 Income Tax Records HB/H89 $ 18.00
885-1051 Payroll H8/H89 $ 50.00
885-1055 Inventory H8/H89 * $ 30.00
885-1056 Mail List H8/H89 * $ 30.00
885-1070 Disk XIV Home Finance H8/H89 $ 18.00
885-1071 SmBusPkg III 3 Disks ¥ $ 75.00
H8/H19 or H89
885-1091 Grade and Score Keeping * $ 30.00
885-1097 Educational Quiz Disk * $ 20.00
H89 or HB/H19
AMATEUR RADIO
885-1023 RTTY Disk H8 Only $ 22.00
885-1052 Morse8 Disk H8 Only $ 18.00
* Means MBASIC is required
H11 SOFTWARE
885-1008 Volume I Documentation and $ 9.00
Program Listings (some for H11)
885-1033 HT-11 Disk I $ 19.00
CP/M SOFTWARE (5-inch only)
885-1201 CP/M (TM) Volumes H1 and H2 % $ 21.00
885-1202 CP/M Volumes 4 and 21-C %% $ 21.00
885-1203 CP/M Volumes 21-A and B 4% $ 21.00
885-1204 CP/M Volumes 26/27-A and B %% $ 21.00
885-1205 CP/M Volumes 26/27-C and D %% $ 21.00
885-1206 CP/M Games Disk %% $ 21.00
The above CP/M products are 2 disks each.
885-1207 TERM and HBCOPY $ 20.00
885-1208 HUG Fig-Forth H8/H89 2 Disks $ 40.00
885-1209 Dungeons and Dragons Game $ 20.00
MBASIC and H89 or HB8/H19
885-1210 HUG Editor $ 20.00
885-1211 Sea Battle Game for CP/M $ 20.00
885-1212 CP/M Utilities I $ 20.00
% Means CP/M 1.43 only (ORG-4200)
%% Means CP/M 1.43 or 2.2 (Heath)
Other CP/M disks are for 2.2
MISCELLANEOUS
885-0017 H8 Poster $ 2.95
885-0018 H89 Poster $ 2.95
885-0019 Color Graphics Poster $ 2.95
885-4 HUG Binder $ 5.75
CP/M 1is a registered trademark of
Digital Research Corp.
17

Interface Your ET/ETA-3400 to the SS-50 Bus

By: George H. Kelm
P.0O. Box 160

Yap, Caroline Is., TT

Guam,

IS 96943

This article describes how to interface a Heathkit Microprocessor Trainer ET-3400
and a Heathkit Memory and Input/Output Accessory ETA-3400 to a SS-50 buss. It
provides the ET/ETA-3400 owner with suggestions on hardware and software
requirements necessary to expand the units into a more useful and flexable system.

Almost everyone who has the ET/ETA-3400
MUST have, at one time or another, thought
about expanding it into a bigger more
useful system. The following article
will describe how I interfaced my units
to the SS-50 Buss.

The entire project, because of the money
and the time that's involved, took over
a year and consisted of the following
parts:

1. Readdressing the Trainer's RAM ICs
14-17

2. Modifications to the ET/ETA-3400

3. Construction of a wirewrap interface
card

4. Software rewriting

The below items are needed to complete
the project:

1. Heathkit ET-3400 Microprocessor Trainer
2. Heathkit ETA-3400 Memory I/0 add-on

3. S5-50 Motherboard and Power Supply

4. Memory card(s), etc.

5. LOTS of time, patience and some money!

READDRESSING THE TRAINER RAM
ICs 14=17

This part of the mod is really not
required, but it's an easy way to start,
and you gain .5K of RAM to be used for
scratchpad and stack. My thanks to James
Greger for his help with this and the
RE line modification.

Those of you who have both the trainer
and the add-on know that when you purchase
the add-on, Heath tells you to pull ICs
14-17, and not to reinsert them when you
are using the ETA-3400 as this would mean
that the trainer is addressing two RAMs
in the 0000-01FF(HEX) area. To change
the RAM addressing, CUT THE TRACE THAT
CONNECTS IC-3 PIN 13 AND IC-2 PIN 1, THEN
RUN A JUMPER FROM IC-3 PIN 13 TO ONE OF
THE IC-2 PINS AS SHOWN IN FIG. 1. I used
AOOO-AlFF(HEX) as this is the address

18

Southwest uses. You should note that
if you ever would like to run the trainer
by itself, you will have to install a
SPDT switch so you can readdress these
RAMs back to 0000-01FF (HEX).

BY THE WAY, if you don't know how to tell
pin 1 of an IC from a capacitor, you
SHOULD NOT TRY THESE MODIFICATIONS or
at least, have assistance from someone
who does!

THE ET-3400 "RE" LINE

There seems to be a lot of
misunderstanding about the uses of the
RE line. This line controls a set of
bi(two)-directional buffers which allow
the CPU to either READ from RAM or another
address (port) or, by changing the
direction of the buffer, to WRITE to RAM
or another address. When the RE line
is low, the buffers are in the READ
direction, when the RE line is high, the
buffers are in the WRITE direction.

The RE line is required by the ETA-3400
add-on, and the line is brought out so
the ETA-3400 can control the line and
turn the buffers in the direction the
ETA-3400 needs for proper operation.
The problem here is if you try to add
additional memory cards and you tie into
the RE line at the Trainer's 40 pin
connector, you will have two or more RAM's
all trying to fight for control of the
RE line. If however, we move the diode
to each memory card, then each card will
be able to use the RE line correctly.

This is also easy to modify. REMOVE THE
DIODEAND THE WIRE THAT HEATHKIT HAS YOU
INSTALL IN THE TRAINER, AND REPLACE IT
WITH A WIRE BETWEEN THE SAME PINS. THIS
IS FROM THE RE CONNECTOR TO PINS 6 AND
35 ON THE 40 PIN CONNECTOR. SECOND, OPEN
THE ETA-3400 AND CUT THE TRACE RUNNING
FROM THE 1C-107 PIN 1 TO PINS & AND 35
ON THE 40 PIN CONNECTOR. THEN INSTALL
THE DIODE YOU REMOVED FROM THE TRAINER
OVER THE CUT ON THE TRACE. THE DIODE

SREMark = Issue 21+ 1981

SHOULD BE INSTALLED WITH THE BANDED END
TOWARD IC-107. WHILE YOU HAVE THE

15 AND 16 OF THE 40 PIN CONNECTOR. THIS
LAST CUT WILL FREE PIN 26 FOR THE NEXT
STEP.

VMA LINE REROUTING

In the ET/ETA-3400 system, the VMA line
is ANDed with the 02 line by IC-5 and
run to the ETA-3400 as the VMA,02. The
55-50 BUSS requires a separate VMA line.
TO DO THIS, CUT THE TRACE IN THE TRAINER
BETWEEN PINS 15 AND 16 ON THE 40 PIN
CONNECTOR. This leaves the 02 line on
pin 15. LAST, RUN A WIRE FROM PIN 26
ON THE 40 PIN CONNECTOR TO THE VMA OUTPUT
CONNECTOR ON THE UNDERSIDE OF THE TRAINER.

That completes the mods to the trainer
and add-on. Now our 40 pin connectors
have pinouts as shown on FIG. 3. The
original pinouts are shown in FIG. 2.

SYSTEM CHECKOUT

Well, if you've stuck with this so far,
you'll want to be sure that you didn't
harm anything in any of the steps so far.
Locate those 2112's that were supplied
with the ET-3400 and the course. Insert
them in the IC sockets on the face of
the trainer. ©Next reconnect the 40 pin
ribbon cable between the ET-3400 and the
ETA-3400, then close everything up after
final inspection for loose wires, or any
other problems. Power-up the system,
and use your ET-3400 memory exam/change
keys or the terminal to look at addresses
AOOO-AlFF(HEX). If you've done everything
OK, then you should see good memory at
these locations.

If you have a set of memory tests, run
the tests on the addresses
AOO0O-AlFF (HEX) . If you have not yet
purchased a set of memory tests, use your
"SLIDE" control and SLIDE out of ROM,
the memory test at 1A34-1A8E(HEX) in the
ETA-3400. 1I'd suggest you relocate it
starting at 0134, by punching in SLIDE
1A34,0134,FF (CR). Next, use your memory
exam and change the following:

New Address From To

0181 CE 1000 CE 0100
0168 CE 00DF CE AlFF
0l6B 8C FFFF 8C A000

Before starting the memory tests, use
your memory exam/change and set all of
the A0O0OO0O-AlFF (HEX) addresses to 00.
Lastly, jump to the memory test which
now starts at 0134 (HEX) by typing in G
0134 (CR). The altered memory test
program will now check your new memory.

WIREWRAP CARD CONSTRUCTION

Cut a piece of perf-board to 5" X 9"

#REMark « [ssue 21+ 1981

(SWTPCO standard for SS-50 buss cards)
and use 5 minute Epoxy to mount 5 each
of the 10 pin MOLEX female connectors
on one side (the 9 inch side) of the
card. Purchase or fabricate two 40 pin
connectors with the same pin spacings
as the ones you see on the
trainer /add=-on. I used two 40 pin
wirewrap IC sockets to make a connector
by carefully cutting each of the sockets
down the middle, and gluing what was the
outside of the connectors together. Mount
the connectors on the top edge of the
board with Epoxy, and finally, mount a
14 pin IC socket in the middle of the
board.

Once the Epoxy is hard, you should use
a fine felt-tipped pen to label one of
the 40 pin connectors as "Trainer" and
the other as "Add-on". Transfer, to the
card, all of the pin numbers and uses
shown in FIG 4 and list 1.

Lastly, the big job, is to wirewrap the
board following the connections listed
in FIG 4. 1I'd suggest you use one color
of wire for the data lines, another color
for the address lines, and so on. This
makes it much easier later if you have
to correct mistakes.

CHECKOUT (AGAIN)

Once you are sure you have the wirewrap
board wired correctly, insert a 7404 in
the IC socket on the board. Now
disconnect the 40 pin cable connecting
the trainer to the add-on. Connect one
end of the 40 pin cable to the connector
on the board marked "Trainer", and the
other end to the trainer itself. Connect
a second 40 pin cable to the connector
on the board marked "Add-on", and the
free end to the add-on itself. Now
TRIPLE-CHECK that you have the cable plugs
correct, that is, pin 1 on the trainer
should connect to VMA,02 on the card,
etc. 1It's easy to get these connectors
backwards as there isn't any index pin
to prevent you from plugging it either
way!!

Finally, power-up the system WITHOUT
THE CARD CONNECTED TO THE SS-50 BUSS.
You should find that the trainer and the
add-on will operate as before you started
with the exception that you will now have
the addition of the Trainer RAMs at
AO0OO0-A1FF (HEX) . If the units don't
operate, you have a possible wiring error
on the wirewrap card. DO NOT GO ANY
FURTHER until you correct the problem!!l!

GETTING THE SS-50 BUSS GOING

I used Thomas Instrumentation memory
cards, which are the same pinouts as the
Southwest System shown on list 1.
However, before you connect the

19

ET/ETA-3400 to your SS-50 buss, it would
be a good idea to go back and recheck
vour pinoute and signal requirements
against those listed. My system only
required the inverting of the VMA line
and the 02, but yours may be different,
and in that case, there are several unused
inverters on the 7404 for you to use.

5S-50 BUSS LINES

Listing #1 gives you a brief description
of the pinouts, names, and definitions
of the 585-50 buss used by Southwest and
most companies using the SS-50 buss.
Once you have rechecked your memory card
requirements against it, you can plug
your wirewrap card into the SS-50 buss.
Make sure to plug the INDEX pin to prevent
insertion of the card into the buss
incorrectly.

With your wirewrap card plugged into the
§5-50 buss, but without any other cards
plugged into the buss, power-up the
ET/ETA-3400 and check to be sure it
operates normally. IF NOT, check the
S5-50 buss and correct the problem.

Once you pass this test, set your memory
card addressing switches or jumpers to
any address between 2400 and 8000 (HEX),
and plug the memory card into the buss.
Before you do so, check to make sure there
is a plug in the correct hole of the card
marked INDEX. Power-up the S5-50 buss,
but not the ET/ETA-3400 and check the
voltage across the +12V, -12V, and +8V
lines to ground (GND). These voltages
can vary by + or - 20% and still be
acceptable. Next, check the voltages
on your memory cards. These should be
+ or - 5% for the card to work correctly.
If you find any high or low voltages,
be sure to correct them before going to
the next step. If you have a friend who
has an SS-50 buss computer, the ideal
set would be for you to ask his help,
and if possible, have him test your memory
boards in his computer.

THE "RE" LINE (AGAIN)

Consult the data that came
with-your memory card, and locate the
data buffers on the schematic. On most
cards there will be two buffers, one for
p0-D3, and the other for D4-D7 just like
the ET-3400. If your buffers have two
enable lines, one low to read and another
to write, you're in luck. Simply connect
a diode similiar to the one now relocated
in the ETA-3400 (a GD510) to the pin that
goes low for a READ. THE BANDED END
SHOULD BE NEAREST THE IC. Connect the
end of the diode to the UD2 pin which
connects to the RE line. If your memory
cards use one line like the ET-3400, (high
to WRITE and low for READ) you may have
to invert the signal using one of the
spare 7404's on the wirewrap card.

Almost done!

20

If all else fails, do as I did, and
connect the diode to first one pin then
the other on the memory card buffer until
you find the one that works! On the
Thomas 24K RAM card, the correct pin is
I1C-105 pin 8.

IT'sS UP!

Once you have the card operating, run
memory tests, and/or use the program in
the first of this article. You'll have
to change the address to match those on
your card.

SOFTWARE

As it comes from Heathkit, the ETA-3400
is set to use 0000-23FF(HEX). Any memory
you add will have to be higher than this.
This is not too limiting until you start
getting more than 4-8K of memory. Most
of the good programs written for this
much memory assumes that you have free
memory from 0000- and up.

If you would like to free the memory from
0000-0800 (HEX) , vyou will have to seriously
consider rewriting the ETA-3400 monitor
ROM, and then burn it into EPROM which
can be set to E000 (HEX) and up. To work
on the program, use the SLIDE and move
the Monitor program to RAM. It will be
up to you to change all three BYTE
instructions to the new address for your
EPROM. Most of the data that needs to
be changed is easy to spot, just use your
"I" command, and go thru the program.
One "hidden" piece of data that is not
a three BYTE instruction is at 1482 (HEX)
ce 14, This is the MSB of the return
address, and should be changed to the
MSB of your EPROM's address. The address
table must also be rewritten to the new
address. Lastly, you'll have to work
to readdress the PIA, which is now at
1000 (HEX) .

One word of caution. Even after you
reburn your monitor to EPROM and locate
it above free memory, the ETA-3400 makes
heavy use of the 00 page,
0000-00FF (HEX) . This will require that
you rewrite some of the commercially
available programs because of addressing
conflicts.

THE END

In conclusion, I should say thanks again
to James Greger for all of his
assistance. It has been fun and
educational, and helped keep me out of
the bars on the weekends! 1If you like
to work with hardware, I hope you will
try these ideas. You can write me for
assistance, but please enclose an 18 cent
SASE with your letter. GOOD LUCK!

REMark « Issue 271=1981

FIGURE #1

READDRESSING THE TRAINER
RAM IC's 14-17

1c-2 |8 9 1c-3
7 10
a000(6 11
8000 [5%f\ 12
6000[4 -13
4000(3 | 14
2 X 15
00001 16

Cut the trace at X and jumper from IC-3
pin 13 to a pin on IC-2 which gives you
the address you need for your system.

FIGURE #2

PIN ASSIGNMENTS BEFORE MODIFICATIONS
40 PIN CONNECTORS ON —--

+12140 1|VMA,02 NC VMA,02
=12 RESET NC RESET
DO TSC DO NC
D1 BA Dl NC
D2 R/W D2 R/W
RE RE RE RE
D3 NMI D3 NC
D4 IRQ p4| & |Inc
D5| & [HALT D5 A |NC
D6l = [+5 ps| 2 |[nc
p7| 2 |eND p7| < |oND
AO| & (A5 A0| % [a15
al Ald All 2 |al4
A2 Al3 A2 @ |a13
02 02 02| = |02
A3 Al2 a3 Al12
Ad aAll A4 All
A5 Al0 A5 Al0
A6 A9 B6 A9
A7 A8 A7 A8
FIGURE #3
AFTER
+12 VMA, 02 NC vMA, 02
=12 RESET NC RESET
DO TSC DO NC
D1 BA D1 NC
D2 R/W D2 R/W
RE RE RE RE
D3 NMI D3 NC
D4 IRQ D4 NC
D5 HALT D5 NC
D6 +5 D6 NC
D7 GND D7 GND
A0 Als A0 Al5
al ald al Al4d
A2 Al3 A2 Al3
VMA 02 NC 02
a3 Al2 A3 al2
Ad All A4 All
a5 Al0 A5 al0
A6 A9 A6 A9
A7 A8 A7 AS

SeREMark « Issue 21+ 1981

FIGURE #4

WIREWRAPP CARD PINOUTS/CONNECTIONS

§5-50 BUSS TRAINER ADD-ON 7400
PIN LINE LINE LINE PIN
1 DO -===- DO —===mmmmm DO

2 plL ———-- Dl —=—==e=m D1

3 D2 =—=-=- P R — D2

4 D3 —---- D3 ——m—m——— D3

5 D4 -——-- D4 —-———-—- D4

6 D5 ==——-- D5 —=——mmm- D5

7 D6 --—-- o T —— D6

8 D7 -——-- oy A — D7

YR . S | S ———— AlS

10 Al4 --—= Al4 ——m===m Ald

11 Al3 =-== Al3 =m===--m Al3

12 Al2 —=== Al2 ———=men Al2
13 All —=== A1l ———ea=- All

14 Al0 ==—== AlQ ==—==== A10

L J— (—— A9

16 A8 ————- Y pEE——— A8

17 BT mewe 'y J——— A7

18 A6 ---—- R —— A6

19 A5 ==e-- L jpE—— A5

20 a4 A4 --- A4

21 A3 w==== i R A3

- — 1 R — A2

23 AL swwew | —— Al

24 AD ===== e AD

25 GND)---

26 GND)=-- GND —————== GND === PIN-7
27 GND)---

28 +8V) § X=CONNECTION)
29 48V) NC

30 +8V) (NC=NO CONNECTION)

31 -12V NC
32 +12V NC

33 INDEX (PLUGGED WITH A PIN)

34 M RESET NC

35 NMI ---- NMI

36 IRQ ---- IRQ

37 UD2 =---= RE =====—-- RE

38 UDl NC

39 02 ==—mmemmmmmmmmmm e PIN-2

40 VMA ———————mmmmm PIN-4

41 R/W -=--- R/W ==———m- R/W

42 RESET -- RESET ----- RESET

43 BA NC

44 01 NC

45 HALT --- HALT

46 TO 50 = BAUD RATE LINES NC
VMA ===mmmcemm——————— PIN-3
02 ——————m 02 ——————- PIN-1
45V mmmmmmmm— e PIN-14

****NOTE: FIGURES #2 AND #3 ARE DIAGRAMS
OF THE TRAINER AND ADD-ON CONNECTORS
SHOWING THE SAME PINOUT CONFIGURATIONS
FOR BOTH DETAILS WITH THE MODIFIED PINS
INDICATED. FURTHER, THE PIN NUMBERS ARE
SHOWN STARTING AT THE TOP LEFT WITH PIN
40 AND TERMINATING AT THE TOP RIGHT WITH
PIN NUMBER 1.

21

LISTING #1

§5-50 PINOUT DESIGNATIONS

PIN NUMBER SIGNAL
1 TO 8 D0 TO D7
9 TO 24 A0 TO AlS
25 TO 27 GND

28 TO 30 +8Vv

I =12v

32 +12V

33 INDEX

34 M RESET

35 NMI

36 IRQ

37 TO 38 UDl & 2

39 02

40 VMA

41 R/W

42 RESET

43 BA

44 01

45 HALT

46 TO 50 110 TO 1200

NIFTY NEATS FROM HOYLE & HOYLE...

Janet Hoyle, of Hoyle & Hoyle Software,
just gave us a call to fill this little
gap with information on their latest
program called PICTURE PERFECT which
is a "receiving and collecting" utility
for all you Ham types out there. They
also offer A REMarkable Experience which
is the next level in Adventure for the
explorer in all of us. Plus, (get this!)

22

DESCRIPTION

Data Buss Lines. Complement of
the 6800 data lines (inverted).

Address Lines. Same as ET-3400
Ground return for power.

+8 VDC supply line.

-12 vDC supply line.

+12 VDC supply line.

A plugged pin hole to prevent
incorrect insertion of boards.

Manual Reset. Active low. In-
put to a oneshot which inturn
outputs pulse to reset CPU.

Nonmaskable Interrupt.
low. Same as ET-3400.

Active

Interrupt Request.
Same as ET-3400.

Active low.

User Defined lines. UD2 is used

here for the RE line.

Clock 2 line. Inverted.

Valid Memory Address. Inverted.
Same as ET-3400.

READ/WRITE line. High for a
READ, low for a WRITE.

Reset line. This is the output
of a oneshot (M RESET).

Bus Available. Same as ET=-3400.

Clock 1 line. Same as ET-3400.

Halt line. Active low. Same as
ET-3400.

Baud lines. Used for ACIA timing
in the Southwest System.

Steer Kleer, an obstacle course game
that will definitly test your manual
dexterity. PICTURE PERFECT sells for
$15.00 while their games go for $10.00
each. All of these pieces are valuable
additions to your software library.

For additional information you can reach
Janet Hoyle by writing:

Hoyle & Hoyle Software

716 South Elam Ave.

Greensboro, NC 27403

SeREMark « Issue 21» 1981

VARPTR in MBASIC

In issue 18 of REMark, there were two articles on MBASIC which touched on the user
defined functions. We had several calls from individuals who wanted more of an
explanation about them. Bob (and I) undertook to learn about the DIMensioned USeR
DEFined function as it relates to something called a VARible PoinTeR (VARPTR) of
MBASIC. I am writing what we have learned.

Our objective will be to write a program which will allow us to run the "BEEP"
subroutine (REMark issues 15-18) using the VARPTR of MBASIC. First, we better start
with a simple comparison of the two user subroutines in MBASIC from issue 18 of
REMark. This should help us to get started. I will refer to the articles as "POKE"
(page 10) and "REAL" (page 24) for simplicity.

Did you notice that both the "POKE" and "REAL" programs used assembly code in the
user defined subroutines? "POKE" used OCTAL while "REAL" used HEX. As we know,
the CPU is not dependent on any particular number base. So, what is the difference
between these two user defined functions? Well, in "POKE", we DEFined the address
and we placed our user program where we wanted it to be stored in memory. 1In
"REAL", we DIMensioned an area and then MBASIC placed the user program where
it wanted. Are there any advantages to either way of storing the user defined
programs? Well, the answer is yes . . I think you will understand the advantages
after completing this article.

By using as our example, the "Real-time function" program (from our "REAL" article),
we Wwill be able to see how MBASIC treats dimensioned user defined subroutines.
We will study this program first and then we will be able to use the more difficult
program, "BEEP" as a dimensioned user defined subroutine.

From the source code of "BEEP" in issue 17 of REMark (page 5), we were able to
determine the OCTAL values to POKE into memory. But what is the source code to
the HEX values in the "Real-time function" program? Here is the source code as
you would see it if you were to write it in assembly code:

XXX XXX 006 000 MVI M,0
XXX XXX 377 001 SCALL . SCIN
XXX XXX 330 RC

XXX XXX 167 MOV M,A
XXX XXX 311 RET

(The x's indicate "some" address in memory.)

Well, this program looks simple enough. How did we "disassemble" this source code
from the HEX values of the "Real-time" subroutine? First, by taking a closer look
at how MBASIC executes DIMENSIONED user defined subroutines, we will be able to
understand the whole picture.

The normal steps for setting up a function call of an MBASIC program are to
dimension, define and execute the call. By looking at the following lines, we can
see that this is true:

1000 DEF USRO= VARPTR (U0(0)) REM: This line was omitted. e
1005 X=USRO (0) : N

2010 DIM U0 (3)

2020 U0 (0)=&H36

2030 U0 (1)=&H1FF

2040 U0 (2)=&H77D8

2050 U0 (3)=&HCY

2060 DEF USRO=VARPTR(UO (0))
2070 IF USRO(0)<>0 THEN 2070

(Note.the new lines 1000 and 1005. These lines must appear this way. The reason
why will be explained later.)

S#REMark « Issue 21+ 1981 23

The next step is to "disassemble” the HEX numbers. To do this we will first convert
the HEX values to OCTAL. This is done for the assembly language programmers who
are more familiar with the OCTAL number base. From there we can determine from
an B8080/Z80 Op Code Table what this program is to do. Here is the conversion:

&H36 = &H0036 = &000066 = &000 &066 = 000 066
&H1FF = &HOLFF = &001377 = &001 &377 = 001 377
&H77D8 = = &167330 = &167 &330 = 167 330
&HC9 = &HOO0CY = &000311 = &000 &311 = 000 311

Does the last column of OCTAL numbers look familiar? Glance back at the assembly
program I gave you earlier. These octal numbers look strikingly similiar to those
octal numbers. What is the difference? When DIMensioning subroutines, MBASIC loads
two bytes per dimensioned variable, and thus we have two HEX (or OCTAL) numbers
per variable. Ok, that's pretty easy!

This is where MBASIC tends to confuse matters . . . MBASIC reverses the order of
the two bytes when storing them in memory. Huh? Let's compare the instructions
and see if we can understand what MBASIC is doing.

* HEX * OCTAL * BYTES LOADED * ASSEMBLY * STORED IN *
* VALUES * EQUIVALENT * REVERSED * CODE * MEMORY *
&H0036 000 066 066 000 066 000 xxxxxx 066
xxxxxx 000
&HOL1FF 001 377 377 001 377 001 XXxXxxx 377
xxxxxx 001
&H77D8 167 330 330 167 330 XXXXxXx 330
167 XXXXXX 167
&HOO0C9 000 311 311 000 311 xxxxxx 311
NOP xxxxxx 000

What is shown are the variables in HEX, with the OCTAL equivalent followed by the
OCTAL bytes shown reversed, as they will be loaded into memory. The next step was
to show the bytes as they appear in the assembly code listing. The last column
shows the addresses (x's) with their instructions or data as they would be stored
in memory. What we have done is converted the HEX code from the "Real-time
function" program to the OCTAL values shown in the order in which the bytes will
be stored in memory.

When executed, what is each step of this user defined subroutine actually doing?
The user defined program will set the Memory register to zero then check to see
if a character has been entered. If no character has been entered CARRY is set
and thus the Return on Carry. If a character has been entered then CARRY will not
be set. The value in the A register will then be MOVed to the Memory register and
the unconditional RETurn will be executed. A simple straight forward program!

Let's review the "Real-time" MBASIC program (issue 18, page 24). 1In line 2010 we
DIMensioned four variables, U0O(0) - U0(3). Lines 2020 -2050, we set the variables
equal to the HEX values. Then in line 2060, two terms are there that we have not
discussed.

The DEF USRO is simply DEFining our USeR machine subroutine. The "0" is the number
that distinguishes this subroutine from other.subroutines. But what does the DEF
USRO actually do? It tells MBASIC at what address to begin executing the user
defined subroutine. So far so good. What is this VARPTR?

The VARPTR(UO(0)) according to definition "returns the address of the variable"
U0(0). What does that mean? Well, remember those "xxx xxx's"? We said when using
the defined user function that MBASIC puts the subroutine any place it wants to.
With the VARPTR we are able to access that address and then execute the subroutine!
And that is exactly what happens.

The "xxx xxXx's" are not important to us because the VARPTR finds and returns the
address of the variable. Remember the "POKE" article and subsequent program? We
determined where in memory we wanted to put the subroutine and then we called it
from that specific address. We had to make sure that we did not POKE anywhere'in
memory that was occupied by something else. That in essence was what the entire
article was about. Now by using the user defined function of MBASIC, we no longer
have to worry about where we put the subroutine in memory because MBASIC does it
all for us. Nice!

24 #REMark = 1ssue 271+ 1981

Well, that about raps it up for user defined functions using the VARPTR . . . or
does it? Our example program from "REAL" used one and two byte instructions. What
happens when we have three byte instructions? Do we just have to be sure the HEX
values are in the proper order and use NOP's where necessary? Is that all there
is to it? What if the three byte instruction is a jump?

In our "BEEP" program we use the Jump Not Zero (JNZ) command three times. Assembly
language programmers know that the JMP and JNZ commands jump to an address NOT a
name as is specified in the LABEL and OPERAND fields e.g. "JNZ LOOP". When we
POKEd the "BEEP" program in issue 18, we POKEd the instructions into known
locations. What if we don't know where the addresses are? What if they are ever
changing? When using the dimensioned user defined subroutines, we do not know the
addresses of any of the bytes of the subroutine because MBASIC takes care of that.
Adding one character of code to an MBASIC program can change the user subroutine
location by 30 OCTAL. Somehow, we need to do a relative and "variable" jump.

With the B080 processor we are not able to do Relative Jumps, meaning jumping from
ANY location backward or forward "X" number of locations from the source code.
Wwith MBASIC taking care of the locations, the addresses change with any variation
in code or memory size. With these unknowns, what can we do?

From the definition of the VARPTR, we found that it "returns the address of the
variable given as the argument". Could this be our answer? Each time MBASIC moves
the subroutine around, the VARPTR will return that new address. So even though
the addresses are varying, we can always determine the first address of the
subroutine. That means we always have a "known" address, right? Can that be our
"relative" address for doing jumps? Why sure! BAll we have to do is determine how
many relative address locations do we need to jump to.

That really is all there is to it. It simply means that we need to determine how
many addresses from the first variable, U0(0), is the jump to go. Let's look at
a table showing the conversion from what we know we want in memory to the HEX values
and its dimensioned variable.

First, I better briefly explain NOP's, as we may need to use this "operation" in
one or all of the three byte instructions. A "No OPeration", NOP, is similiar to
a NULL statement. It is neither an instruction or data and the CPU, simply bypasses
it. NOTE: The NOP, which is 000 OCTAL or 00 HEX, cannot follow an instruction
that requires data. The CPU will execute it as 000 OCTAL or 00 HEX, if it is
looking for data, e.g. a jump looking for an address. This should not need any
further explanation.

To execute the program properly, we want the program, once loaded in memory, to
appear identical to the OCTAL codes of the source code on page 5 of REMark issue
17, with the exception of the addresses to jump to. The objective of the table
is to show the addresses (x's) with the OCTAL codes (as we will need to "see" them
in memory in order to execute "BEEP"), converted to the HEX values with the
appropriate user defined variable.

* NUMBERED * STORED IN * BYTES * HEX * MBASIC *
* ADDRESS * MEMORY * REVERSED * VALUES * VARIABLE *
Relative xxxxxx 006 005 006 05 06 U0 (0)
(1) xxxxxx 005
(2) XXXxXxx 315 136 315 5E CD U0 (1)
(3) XXXxxx 136
(4) xxxxxx 002 026 002 16 02 U0 (2)
(5) xxxxxx 026
(6) XXXXXX 377 036 377 1E FF U0 (3)
(7) xxxxxx 036
(8) XXXxXxXX 377 035 377 1D FF U0 (4)
(9) xxxxxx 035

+ (10) xxxxxx 000 302 000 c2 00 U0 (5)
(11) XXxXxxx 302
(12) XXXXXX 2?27 222 222 ?2? 22 uo (6)
(13) XXAXXX 2727
(14) xxxxxx 025 302 025 c2 15 U0 (7)
(15) XXxxxx 302
(16) XXXXXX 2772 22?2 227 T 27 U0 (8)
(17) XXXXXX 2727

SREMark «Issue 211981

25

(18) xxxxxx 005 302 005 c2 05 U0 (9)

(19) XXxxxx 302
(21) XXXXXX 277 277 772? 27 27 U0 (10)
(22) XXXXXX 227
{23) xxxxxx 311 311 c9 U0 (11)

(Note: The location of the "+" is the only address where a NOP is necessary.)

The 302 OCTAL is the JNZ instruction to an address we do not know ("22?2 222").
As soon as we determine these addresses we have written our program. Look at the
first instruction, the "xxxxxx 006". This is our "Relative" location. The x's
are some address, we said that we can determine this address by using the VARPTR!
The "DEF USRO=VARPTR(UO (0))"™ returns this very address!

Before we go on and confuse anyone, we better explain that the VARPTR returns a
DECIMAL value as the address. This is going to make our job so simple, because
now we do not have to worry about reversing the order of the bytes for MBASIC.
By simply counting from the first "known" or "relative" address, to the address
we want to jump to, we can add that decimal value to the U0(0) address. We will
then have our jump completed.

The three JNZ's, LOOP, LOOP2 and LOOP3 (issue 17, page 5), jump to (2) 315 OCTAL,
(7) 036 OCTAL and (9) 035 OCTAL, respectively. By adding the DECIMAL (2), (7) and
(9) to the VARPTR(UO(0)), we know exactly where we want to jump no matter where
MBASIC decides to put the subroutine.

Let's look at the program.

10 ' RUNNING "BEEP" AS A USER DEFINED FUNCTION USING THE VARPTR
20 CLEAR 5000: WIDTH 255: DEFINT A-Z:

30 PRINT:PRINT TAB(l0) "Begin running BEEP":PRINT: PRINT:
40 DIM U0 (12):

50 Z=VARPTR(UO0(0)):

60 UO(0)=&H506 : UO(1l)=&HS5ECD: U0 (2)=&H1602: UO(3)=&H1lEFF:
70 U0 (4)=&H1DFF: U0 (5)=&HC200: U0 (6)=2+9 U0 (7)=&HC215:
80 U0(8)=2+7 : U0 (9)=&HC205: U0(10)=2+2 U0 (11)=&HCY9 :
90 DEF USRO=VARPTR(U0(0)) :

100 PRINT USR(O0):

110 PRINT VARPTR(UO (0)) :

120 PRINT PEEK (VARPTR(UO0(0))) =

With all the background leading up to this program, there should be very little
confusion about the HEX values and where they came from. 1In line 100, the PRINT
USR(0) simply executes the user defined subroutine, UO. (For the time being,
disregard the "0" value, which this statement will print on the screen.) The PRINT
VARPTR(UO0(0)), line 110, prints the value in DECIMAL of the first address of our
subroutine, while in line 120 the value "6" will be printed. This DECIMAL "6" (006
OCTAL) is our first instruction as you will remember from our program and table
shown above. The rest of the program should be self-explanatory, or you would not
have read this far.

Wwhen you have entered and executed the program, I would suggest that you "look"
at the memory addresses to verify what you have inputted. First, convert the
DECIMAL address to SPLIT-OCTAL.

On the H89, enter the "SHIFT RESET" key combination as if to reboot, then instead
of entering the "B" for boot, enter an "S". The computer will finish the word
"Substitute". Enter the SPLIT-OCTAL value (that you converted from the DECIMAL
address given from the program) and a <CR>. You will now see the SPLIT-OCTAL value
and the 006 OCTAL value which is our first instruction. (HINT: In case you happen
to make a slight error in converting to SPLIT-OCTAL, you may want to begin about
50 SPLIT-OCTAL addresses earlier.) Each time you hit the SPACE BAR, you will see
the next sequential addresses and the OCTAL value that is stored in that location.
These values should be identical to our table shown above. Note the jumps (302
OCTAL) and their addresses. Doesn't it just excite you to see these values right
before your eyes?!! (For those of you with a 48k machine, if you enter the program
verbatum, the address of the U0(0) will be 29996 DEC and 165 054 SPLIT-OCTAL. This
may be of help to some of you.)

26 S REMark « Issue 21+ 1981

(For those of you who have the H8, simply do a soft-reset, the "0" and "MEM" keys
hit simultanously. "ALTER" the memory to the converted SPLIT-OCTAL value and you
can see the values on your front panel. Neato!!

the

Actually, that gives you all the information you need to understand and use
too

VARPTR in MBASIC. As I look back on the article, I don't think it was all
difficult. I hope you learned something and also that you found it interesting.

Now, for those of you who like to experiment, I am going to throw something out
to you that you may wish to investigate. MBASIC does some strange things sometimes,
and to tell you the truth we are baffled and don't know what is going on with the
following example.

The first important confusing part appears to relate to the rest of our question.
The VARPTR of MBASIC is ever changing and jumping around. Note that I added (back
in the earlier part of this article) the new line 1000 and 1005 in the "Real-time"
subroutine and that line 90 and 100 are set up the same way in this "BEEP" program.
The VARPTR is moving around and if PRINT USRO is given without the DEF USRO, then
the VARPTR will have moved and the subroutine will most likely not execute

properly.
begins executing wherever
Confusing? How about this? In the
the
of using the
"kinda" sits there.
locations ahead of the U0(0) . .
finally gave it up to the wind.

"PRINT USRO",

Huh?

If it has moved since the DEF USRO=VARPTR(UO(0)),
the VARPTR happens to be pointing.

"Q=USR1 (BEEP)" to execute the subroutine.
you would find that it will not execute . .
The VARPTR using the
Bob and I looked at that several days and
Any ideas out there why changing the executing

then the PRINT USRO

"POKE" program of issue 18 page 13, we used

If you were to try "Q=USRO" instead
it just

"Q=USRO0", returns an address five

line will return a consistant, wrong address?

I guess to conclude this article,

a nice job and has its productive place in programming.
(to say the least) means of linking to user

the VARPTR make it an interesting
defined, machine code subroutines.

Heath Related Products

From M.I.-8 Ted Benglen of
Micro-Interface recently sent us a
collection of Heath related hardware items
which are quite interesting. You may
find that some of Ted's hardware would
be a useful addition to either your H-8

or H-89. Here is a list of the super
offering from M.I.-8:

1. Modem Kit H-8/H-89

2. Digitalker H-8 /H-89 (set vocab)

3. V8 Voice Synthesizer H-8/H-89
4, Parallel I/0 and Clock H-8
5. BSR Home Control Interface H-8/H-89
Ted has complete information on each of
these outstanding hardware additions to
your computer system. You can contact
Ted by writing to:

M.I.-8
822 East County Road 30
Fort Collins, CO 80525

SILVERMAN ASSOCIATES -- Bernard Silverman
recently sent HUG information on two
packages they have ready to go. I feel
his letter contains some important details
about the products.

SREMark « Issue 271 » 1981

it is fair to say the VARPTR of MBASIC will do

The "hidden" rules of using

<TLJ>
baZic -- ... "baZic" is a BASIC
interupter that will allow any

Heath/Zenith H-89 or equal computer to
run any NorthStar BASIC program under
CP/M - and run faster and more
efficiently. "baZic" was written using
the full capability of the Z-B0 processor
and reports of up to 60% improvement over
the NorthStar have been reported.

MONEY MAESTRO =-- ... This product should
appeal to the entire H-89 community since
it makes big system features available
to the home computer user. It handles
an individuals personal banking - both
at the office, for the small professional
office, and at home for a personal home
banking system. The system has built
in Electronics Funds Transfer (EFT)
capability so that when banks are ready
to offer that service Money Maestro, with
a simple disk exchange to put the user's
bank number into the system, will allow
a tie into EFT systems.

For additional information, contact:

Silverman Associates

4010 Opal Street
Oakland, CA 94609

27

FROM PAGE 15

will need to decide if you want to purchase a 280 CPU Card, HA-8-6, which includes
the Extended Configuration along with the upgraded microprocessor. If you are
content with the 8080 microprocessor, your other option is to purchase the HA-8-8

Extended Configquration Option from the Heath catalog. The instructions of the kits
need no explanation.

The HB89 requires the H-88-7 Replacement ROM Kit to facilitate the ORG-0 operation
of CP/M. The H89 already contains the ZB0 microprocessor and therefore leaves only
the one option to HB89 owners.

The next step is to purchase the Digital Research's CP/M software package from the
Heath catalog. For the 5 1/4" drive system, purchase the HOS-817-2 and the
HOS-847-2 for 8" drive system.

When the hardware and software packages come, you will obviously need to do the
hardware modifications as instructed, no comment is necessary from HUG. The
software package, however, will need a brief explanation.

The first step is the signing of the "SOFTWARE LICENSE AGREEMENT". Be sure you
read the entire agreement. The most confusing part of the agreement is, "each
program license granted under this Agreement authorizes the customer to use the
Licensed Program in any machine readable form on any single computer system
(referred to as System). A separate license is required for each System on which
the Licensed Program will be used." This means that your CP/M operating system
can be run on only one computer. If you have more than one computer, yvou will need
to purchase an individual CP/M operating system for each "system" you have. That
is one reason why you must understand the entire agreement before signing it.

After reading, understanding, signing, and mailing the Agreement, you are then ready
to begin to learn the CP/M operating system. It is at this point that this first
part will be concluded. Part II will begin to explain the set up for CONFIGURing
CP/M to your system so that you will finally be able to start to use the widely
used CP/M operating system.

At this point, it may be wise to recommend some books to supplement the CP/M
documentation. Heath is in the stages of preparing a CP/M Course (EC-1120) that
includes tapes and manuals. The course will be available in January of 1982. I
have viewed the first few chapters at this point and highly recommend it to the
very beginner. The first chapter is probably familiar to most everyone and you
will think that you have wasted your time, however, as you continue to listen and
study, yvou will begin to feel more at ease. You will become familiar with the terms
and definitions, and find a good basic understanding of CP/M.

I would suggest that you purchase another book or manual to complement the course
from Heath. Howard W. Sams & Co., Inc. has published a number of beginner manuals
including their "CP/M(tm) PRIMER" by Stephen M. Murtha and Mitchell Waite. I rely
on this manual as a primary source of my studying of CP/M. Dale Lamm, from the
HUG Bulletin Board, suggested the "CP/M Handbook" by Rodnay Zaks, published by
SYBEX. One of these two sources supplemented with Heath's CP/M course will blend
very well together and will give you an excellent start on learning the CP/M
operating system.

In conclusion of this introduction to CP/M, I would like to say that by learning
both the HDOS and CP/M operating systems, you will have more of an appreciation
for both systems. They both possess their good and bad points, but understood
together, you are able to accomplish your achievements by making a choice of which
system will meet your goals the best.

<TLJ>
HUGBB Helps and Hints
One of the biggest causes of confusion are? Let me just briefly discuss software

to any interested person that would like
to join the HUGBB via MNET or the SOURCE,
is which software modem package to
purchase. There are so many different
packages available from HUG and
SOFTSTUFF(tm) plus other sources, how
does anyone know what the differences

28

modem packages and I hope that you will
pickup enough information that you can
decide for yourself which modem package
will best fit your needs.

The purpose of a software modem package
is to allow two computers to communicate

S REMark « Issue 21+ 1981

with each other via telephone lines.
From that point, each package can branch
and provide different options dependent
on what type of computer is at the other
end. Baud rates, filtering of some codes,
transferring files to and from the other
system, auto-log-on, and even now
auto-dial are some of the different
options that are available in modem
packages. The best way to explain the
different packages available from HUG
is to give a brief abstract of each
product.

P/N 885-1043 MODEM Heath to Heath: This
package is the most primitive that is
available and is intended for
communications between Heath computers,
ONLY. If you will only communicate
between Heath systems this package will
serve your purposes, but if you will
eventually use it for communications
between your system and MNET or the
SOURCE, then you will not want this
package. Selectable BAUD rates are 110,
150, and 300.

P/N 885-1050 M.C.S. Modem for H8/H89:
This package was written for
communications between a Heath computer
and a time-share HOST such as MNET or
the SOURCE. It does NOT communicate
properly (without making modifications)
between Heath computers. The source
listing is included with the disk,
however, it is a very difficult program
to modify. The COPY mode of MCS is not
a very efficient means of storing data
in a buffer for saving to disk.
Selectable BAUD rates include 300 and
1200. All in all, this package has all
the necessary options to "talk" to MNET
or the SOURCE but not another Heath
system.

P/N B885-1089 Disk XVIII Misc H8/HB89:
This disk contains the software modem
package HTERM. This package is the newest
we have to offer and I highly recommend
it. It has nine selectable BAUD rates
from 110 to 9600. It allows the full
use of the normal control characters and
the ESCape functions of the H19/H89 CRT.
It has full capabilities of transferring
files to/from the other system. HTERM
does not offer auto-logon. It can be
used for any type of communication. I
have used it to talk to MNET, the SOURCE,
and my H1l. Pat Swayne originally wrote
it to communicate with the ET3400. A
very versatile package.

P/N 885-1207 TERM and HB8COPY: TERM is
a CP/M modem package. It includes auto
log-on to TYMNET or CompuServe. The BAUD

rate may be changed within the source
code. It has full transfer capabilities
of files and is independent of the other
system. An excellent modem package.

P/N 885-1212 CP/M Utilities I: This CP/M

S REMark « Issue 21+ 1981

disk has the H19/H89 version of MPLINK
as announced in this issue of REMark.
(See page 1l6.) It features automatic
log-on, normal file save and trapsmit,
and optional XOFF and XON recognition.
It makes use of the CRT function keys
and the 25th line.

SOFTSTUFF (tm) CPS modem package; SF-9003
for HDOS, and SF-9103 for CP/M: This
is probably the easiest package to learn
of the ones we have discussed so far.
It uses the 25th line to display the
options that are available while in a
particular function of CPS. The BAUD
rate and other options are available
through a series of menus. It includes
auto-logon and a real-time clock display
on the 25th line. CPS does not allow
the full use of the control characters
and the ESCape codes of the H19/HB89
terminal to be processed from the HOST
or other computer.

These modem packages available from HUG
and SOFTSTUFF(tm) are not the only
packages available in the software
market. I have seen or heard of others
that are very good and that offer the
same features of these packages. (I
understand there are even auto-dial
packages, but have not used one as of
yet.) Among some of the others I have
used briefly or seen are versions of
ITCOM, INTERCOM, and wow . . who knows
what else.

Anyway there are many software modem
packages available on the market. Because
this "craze" of computer communications
is in such an infant stage, don't be too
critical about the many modem packages
and that each one offers different
features. As communications continue
to become more sophisticated these will
become primitive also. There is a whole
new world beginning right before our eyes
and it is getting bigger and bigger.

Kinda' scarey!! *SYSOP <TLJ>

Local HUG News

Roger Fraumann reports that the C-Quad
(Champaign County Computer Club) is alive
and well! Roger just took on the
responsibility of representing the club
for their activities. If you would like
additional information about C-4 and this
computer group, contact Roger at 412
Dorchester; Mahomet IL 61835.

SLHUG (St. Louis HUG) meets every month
on the second Wednesday at the Heathkit
Electronics Center located in Bridgeton
MO. Meetings begin at 7:30 PM and
visitors are always welcome to attend.

@

TO PAGE 31

29

BUGGIN’

Dear HUG,

I discovered that disabling CTRL-C and
CTRL-A in MBASIC has great merit if you
need to "protect" your software. This
can be accomplished for HDOS MBASIC
Version 4.82 as follows:

1. Locate sector 78 of MBASIC with a patch
utility (HUG's DUMP or similiar).

2. Change the following bytes to "00":

Location 01d Value
HEX OCTAL HEX OCTAL
31 61 6B 153
32 62 65 145
38 70 71 161
39 71 65 145

Now when someone presses CTRL-C or CTRL-A,
nothing at all happens. (HINT: develop
your software before making this patch!)

Gary Hawthorne
Fair Lawn, NJ

Dear Bob,

I have recently completed a software
modification to FBE Researches' Centronics
737.DVD. The modification allows tabs
to be processed in the proportional spaced
mode of operation. Now, in all three
character fonts (10CPI,16,7CPI, PROPO),
the .DVD aligns the tabs so they are in
the same format as the H19-HB/H89 tabs
are.

I am offering this modified version to
owners of FBE's CT.DVD for three dollars
(to cover shipping and handling) and their
original FBE.DVD disk which will be
returned with my CT.DVD and MCT.ASM files
added to it.

Dan Morin

124 Plymouth Street
Manchester, NH 03102

30

Dear HUG,

It has come to my attention that the
procedure for "Recovering A Deleted File"
published in Issue 19 of REMark will not
work under certain conditions. Referring
to the article, step 2 of the procedure
requires that the values at the 17th and
18th bytes be noted. If the value of
the 17th byte is of a higher value than
that located at the 18th byte, the
procedure described will not result in
a recovered file and could result in
unpredictable disk performance if used.

This condition seems to exist when various
GROUPS have been made available by
previous deletes of small files and they
were located in the GRT.SYS file at the
lower addresses. As a result, HDOS, in
its' effort to string together as many
contiguous groups as possible, may start
the file location record at a high address
in the GRT.SYS file and actually fold
around and end up at a lower address.
In this case, the procedure described

should not be used since the file is not
strung together from low address to high
address. I have experimented around with
this condition and could not develop a
guaranteed procedure unless the condition
of the GRT.SYS file was known prior to
the delete. This, of course, is unlikely
since usually one does not anticipate
an unintentional delete.

It appears that this condition happens
rarely and usually on a disk that is
nearly full or full to the delete. I
apologize if this has caused any
inconvenience to any of your readers and
would welcome any solutions to the
problem.

Donald Harton
2313 Covered Bridge Garth
Baltimore, MD 21234

Dear HUG,

Here is a little something I ran into,
and would like to share. Under MBASIC
4.7 (also under 4.8) for HDOS a period
(.) following the command EDIT, will
designate the current line number for
manipulation (see manual, page 4-6).
Curiosity lead me to try this technique
on some other commands. I found that
the period (.) after the following
commands works in the same way as it would
when using EDIT:

AUTO DELETE
RENUM CONT
LIST

A little experimentation will give you
the hang of it quickly.

Joseph Gonzales
Trujillo Alto, PR 00760

S REMark « Issue 27+ 1981

FROM PAGE 29

The Al Lynch HUG meets on the first and
third Wednesday of each month at the
Tampa, Flordia Heathkit Electronics Center
at 7:30 PM. For additional information,
either contact the store or drop down
on a Wednesday evening to see what is
going on in the Flordia Center.

Paul Beland is looking for a users' group
in his area or individuals that are
interested in getting together in
Cambridge. 1If you can help Paul, or if
you just want to get to know another user,
drop him a line at 453 Franklin Street;

James Piunti would like to contact other
HUG members located near the RAF
Chicksands, England. If you would like
to get together with Jim, drop him a line
at the following address: 6590 ESG Box
1001; APO New York, NY 09193

Bill Latham is interested in forming a
Heath Users' Group in Guam. He feels
that there may be enough interest by
combining the Services that he is willing
to give it a shot. Bill tentatively has
called this group GHUG (Guam Heath Users'
Group) . If you would like to get
together with Bill to discuss GHUG,
contact him by writing:

William R. Latham

Cambridge, Mass. 02139 Capt, 1238-B Palau Loop

APO SF 96334

A little note from Jim Simpson ... Over
a dozen Heathkit Hobbyist have formed
a local Heath Users' Group in Charlotte,
NC. For details on the monthly meetings,
contact Jim Simpson (704) 374-6997 or
Mike LaFleur (704) 364-9667 or write 2721
Picardy Place; Charlotte, NC 282009.

Alaska HUG---A new group is in the process
of forming in Alaska. For further details
contact Ben Sevier, P.0O. Box 951, Eagle
River, Alaska 99577 Phone (907)-694-9908.

Bulletin Boards

Thanks HUG Charlotte
PNHUG (WA) 24 hrs. (206)-246-4468
OCEAN (NJ) 24 hrs. (201)-775-8705
CIHUG (Central Illinois Heath Users' FAIRLAWN (NJ) AFTER HOURS (201)-791-6983
Group) meets on the third Sunday of every PEABODY (MA) AFTER HOURS (617)-531-9332
other month. This new HUG has SLHUG (MO) 24 hrs. (314)-291-1854
approximately 17 members that get together MUG (KS) 24 hrs. (913)-362-9583
at 3:00 PM. For additional information,
contact the Club President, Ronald Morgan
at (309) 745-8313 in Washington IL. The NOTE: Please add the bulletin board list

clubs main center of population is the
Peoria area.

to any you may have already and watch
for new boards as they are announced under

the Local HUG News section in REMark.

Changing your address? Be sure and let us know since the software catalog and
REMark are mailed bulk rate and it is not forwarded or returned.

HUG MEMBERSHIP RENEWAL FORM

REMEMBER — ENCLOSE CHECK OR MONEY ORDER
When was the last time you renewed?
CHECK THE APPROPRIATE BOX AND RETURN TO HUG
Check your ID card for your expiration date.
NEW MEMBERSHIP

IS THE INFORMATION ON THE REVERSE SIDE CORRECT? FEE IS:
IF NOT FILL IN BELOW.
RENEWAL RATES
Naiie US DOMESTIC $15] $18 [
CANADA $17 [J US FUNDS $20[]
City-State * Membership in England, France, Germany, Belgium, Hol-
land, Sweden and Switzerland is acquired through the
Zip local distributor at the prevailing rate.

HeREMark « Issue 21+ 1981 31

Al Heath
Users’
Croup

Hilltop Road

St. Joseph MI 49085

POSTMASTER: If undeliverable,
please do not return.

885-2021

BLACKMAX

Many of our HUG BB users have requested
to be "officially" introduced to the
infamous "BLACKMAX". Some of them (like
Al Dallas of ANAHUG) are obsessed with
trying to find out who this strange
computer MYSTERY PERSON is. Well Al,
and all you other curiousity seekers,
here "HE" is (I guess?). Now, ask
yourself one question....DO YOU REALLY
WANT TO MEET THIS INDIVIDUAL? I might
add, your HUG staff risked 1life and limb
to get this picture and now our camera
is a pile of jelly. Anyway, don't mention
HDOS to this CP/M freak! That is, if
you want to keep your computer in one
piece! **NOTE: Hope this helps AL!

BE:

BULK RATE
U.S. Postage
PAID
Heath Users' Group

	REMark_issue21_1981_Page_01
	REMark_issue21_1981_Page_03
	REMark_issue21_1981_Page_04
	REMark_issue21_1981_Page_05
	REMark_issue21_1981_Page_06
	REMark_issue21_1981_Page_07
	REMark_issue21_1981_Page_08
	REMark_issue21_1981_Page_09
	REMark_issue21_1981_Page_10
	REMark_issue21_1981_Page_12
	REMark_issue21_1981_Page_13
	REMark_issue21_1981_Page_14
	REMark_issue21_1981_Page_15
	REMark_issue21_1981_Page_16
	REMark_issue21_1981_Page_17
	REMark_issue21_1981_Page_18
	REMark_issue21_1981_Page_19
	REMark_issue21_1981_Page_20
	REMark_issue21_1981_Page_21
	REMark_issue21_1981_Page_22
	REMark_issue21_1981_Page_23
	REMark_issue21_1981_Page_24
	REMark_issue21_1981_Page_25
	REMark_issue21_1981_Page_26
	REMark_issue21_1981_Page_27
	REMark_issue21_1981_Page_28
	REMark_issue21_1981_Page_29
	REMark_issue21_1981_Page_30
	REMark_issue21_1981_Page_31
	REMark_issue21_1981_Page_32

