Official magazine for users of Heath computer equipment.

~
on the cover. . ..

Sunset on Lake Michigan

Photo by Gerry Kabelman.

.

on the stack

\

o

=CAT
RENEWALHUGi0iiiiiiirniiernrannannnnns 3
Bob Ellerton
A KISS for Assembly Programming 4
Bob Ellerton
PAGED: A Text Editor Anyone Can Use 7
Scott Witt
H11 FORTRAN vs. BASICcoviviinnnnnnns 8
Peter Vijlbrief, M.D.
Using RDT to Make a Hex-Octal Assembler....... 12
Patrick Swayne
H8COMM/H89COMM Modification 15
New HUG Softwarecoviiiiiiiinniinnns 16
Movin’ On......coooiiiiiiiiiiieiiiiniancnnnannes 16
Terry Jensen
HUG Produtt LISE . ..o cunrwssmnenmmmnn ey 17
$10.000 FIRST PRIZE ..::insoovivonensnsnassdaie 18
Some Thoughts on Writing Game Programs 19
Roy S. Reichert
Sorting and Merging Sequential File Data 23
William N. Campbell, M.D.
Tiny BASIC Tricks . civcvsnis vvaivs sosiveios s 24
Buggin" HUGc0iiiiiiiinniiniinnennnnns 26
Non-Heath Products SRR SRR 28
HUGBB Via MicroNETcoviiiieinanans 29
Terry Jensen
Local HUG NeWsovvvinrnnnnnnnnnnnnennns 31
HUG POBerS covvvivan vaaiisvessas ioms sewei o 32
Making Waves in Tiny BASIC 32

“REMark"” is a HUG membership magazine pub-
lished ten times yearly. A subscription cannot be
purchased separately without membership. the
following rates apply.

U.S. Canada &

Domestic Mexico International

$20 US FUNDS $28
$17 US FUNDS $22

$18
$15

Initial

Renewal

Membership in England, France, Germany, Bel-
gium, Holland, Sweden and Switzerland is ac-
quired through the local distributor at the prevail-
ing rate.

Back issues are available at $2.50 plus 10% handl-
ing and shipping. Requests for magazines mailed
to foreign countries should specify mailing
method and add the appropriate cost.

Send payment to:

Heath Users’ Group
Hilltop Road
St. Joseph, MI 49085

Although it is a policy to check material placed in
REMark for accuracy, HUG offers no warranty,
either expressed or implied, and is not responsible
for any losses due to the use of any material in this
magazine.

Articles submitted by users and published in RE-
Mark, which describe hardware modifications, are
not supported by Heathkit Electronic Centers or
Heath Technical Consultation.

HUG Manager and Editor Bob Ellerton
Assistant Editor and

Software Developer........... Patrick Swayne
HUG Secretary Nancy Strunk
Software Developer Gerry Kabelman
HUG BB s vaianmomeiy v Terry Jensen

Copyright © 1981. Heath Users' Group

HUG is provided by Heath Company as a service to
its members for the purpose of fosteripg the ex-
change of ideas to enhance their usage of Heath
equipment. As such, little or no evaluation of the
programs in the software catalog, REMark or other
HUG publications is performed by Heath Com-
pany, in general and HUG in particular. The pros-
pective user is hereby put on notice that the prog-
rams may contain faults the consequences of
which Heath Company in general and HUG in
particular cannot be held responsible. The pros-
pective user is, by virtue of obtaining and using
these programs, assuming full risk for all consequ-
ences.

MeREMark

(%]

SREMark « Issue 15 + 1981

RENEWAL.HUG

ERROR -- FILE NOT FOUND

OUR OFFICE WIZARD reports a serious
problem along with a big OOPS! It seems
that the main computer used to co-ordinate
new memberships and appropriate renewal
information, has a major malfunction.
Somebody forgot to tell the computer about
you "oldtimers"™ that want to continue
being HUG members! NOW WHAT? On
examination of the situation (program),
we found that the best, gquickest, and
most efficient method of correction would
be an explanation to all readers so that
you will be able to determine your
expiration date and take us to "task"
to ensure continued delivery of your
"goodies". We have called on Nancy (THE
WIZARD) to provide all of us with this
information.

BE:
TAKE IT AWAY NANCY!

During the original program description
for our "BIG" machine, we included a
method by which "membership renewal" would
be "looked" at by the computer
approximately one month prior to a members
expiration date. Well...as you can guess,
somebody either didn't clean their ears
or one of us was chewing bubble-gum.
Because, the computer now generates
renewal info about one month AFTER you
have expired! We have received many
complaints, and I am still trying to get
rid of the gray hair this situation has
caused.

AN EXPLANATION PLEASE....

Your HUG ID contains a twelve digit
number. The first six digits are your
personal numbers that identifies you as
an individual. The next six digits
are....AND I STRESS....your STARTING date
as a member! (Some of you are probably
saying to yourself....NO, that's not
correct! Your ID does not agree with
the date when you became a HUG member!
You are correct. If you required renewal,
your renewal was handled manually....for
obvious reasons. The "BIG" machine didn't
tell us about you. So, GET NEW!) Anyway,
how can you decide when it's time to
renew? Let's look at an example

YeREMark « Issue 15 « 1981

Mr. X examines his ID to find the required
information.
His ID is -———- xxxxxx800625.

Remember you use the last six digits or
800625. Mr. X joined HUG on JUNE 25,
1980. The first two digits (or B80)
indicate the year. The second two digits
(or 06) indicate the ‘month. The last
two digits (or 25) indicate the day.
Given this data, Mr. X knows that his

EXPIRATION will occur on JUNE 25, 1981,
or one year from his "start" date.

To renew a membership to the Heath Users'
Group, simply use the membership form
found on the inside back cover of REMark
(if you don't want to CUT ON DOTTED LINE,
a copy will do just fine).

I hope that I have described this "OOPS"
well enough. If you have any questions
please feel free to give me a call at
HUG. And, above all, please forgive me
as, I think someone once said, "TO ERR
IS HUMAN, TO REALLY SCREW UP REQUIRES
A BIG MACHINE" or something like that!

P.S.
fixed!

We hear the BIG GUY is gonna get
THREE CHEERS !!!!

NS:

A NOTE OF THANKS

Here's a quicky note of thanks to all
of you that responded to our cry for
information and articles to be printed
in future issues of REMark. We have
received some "HEAVY" stuff and we are
looking forward to publishing this
material.

If you have not sent a little
"something®"™ for REMark, please
reconsider! It is your tips and
suggestions, in particular, the small

articles and programs that most of our
readers find invaluable.

THANKS again - BE:

ATTENTION JB:
HUG member!

You are now an OFFICIAL

A KISS for Assembly Programming

Again, HUG has received many requests
to review Assembly Language Programming
techniques that will enable the beginner
to "get started” with this fascinating
area of computer software development.
To make the following information most
useful, we have selected a very small
program which can be entered on both the
H8 and HB89 with little complication.
And, to prevent total confusion, (mostly
my own) the article will be presented
in three parts for coming issues of
REMark.

PROGRAM DESCRIPTION

The program selected will make use of
the "horn" (speaker) of the H8 or the
"bell" (speaker) of the H89. The program
itself actually contains three major parts
each of which is a smaller program capable
of independent operation (more on this
later). During this mini-course, you
will be using the HDOS Assembler and
Editor to construct the .ASM file
(source), the .LST file (listing), and
the .ABS file (runnable). As will be
explained, you will be able to modify
this program to fully understand the
project on completion. The completed
program (before modification) will do
nothing more than "ring" the bell (or
horn) five times before returning to the
HDOS prompt (>) that you are already
familiar with. However, several important
factors will be covered including speed,
similiarity to other languages, and
familiarity with some of the "working
parts" of the CPU itself.

STEP #1 ... DEFINE YOUR WORK

Every programmer knows the importance
of a logical approach to solving a
software problem. FIRST you must decide
what it is you want the computer to do!
We have already:decided that we are going
to use the "bell"™ in our computer.
Further, we have decided for some wierd
reason that the "bell"™ should "sound"
five times. Well...if you were to examine
the "listing" for the H8 and the H89 you
would find two similiar items. Both have
"monitors" (H8=PAM-8 and H89=MTR88) and
both "monitors™ have a routine known as
"HORNO". "HORNO" makes the "bell"™ go
one time! (NOTE: the monitor is the guy
that "tells" the computer to do certain
predetermined functions (ie turn on front
panel-H8, show H: on screen of the H89.))
That's pretty handy! Someone thought
to put a program just for us in a major
part which "lives" in the computer! Ok,

now we have a way to make the "bell ring"
(one of the three major parts). Now we
need some way for our computer to count
to five (BASICites, how about a FOR-NEXT
loop) . (There's the second major part.)
Lastly, because the computer is soooo
fast and we are soo0o0o slow, we will need
a way to "WAIT" between "rings" to
actually see (or should I say hear) if
our computer counted to five. (There's
the third major part.) Now we defined
what we are going to need to get our work
done!

1. RING THE BELL
2. COUNT TO FIVE
3. WAIT FOR US

STEP #2 SMOOTH FLOW

The second major step toward getting the
job done is the logical FLOW of our
program in the computer. To obtain the
desired results, programmers have created
the FLOW CHART (see fig. A). Let's read
through this thing together and learn
something about the chart and the innards
of the CPU.

This chart is comprised of eight major
parts or "blocks".

1. THE START is the beginning of the
program which in BASIC terms relates to
the first line. In Assembly language,
the starting point or "line number" is
usually an ADDRESS (refer to fig. B) We
will pick the address of 10#@8¢ as the
first "line" (the "A" after 100000
indicates that we have selected the OCTAL
numbering system for reference with "A"
denoting "split-octal®™ [nnnnnnA] later
you will see a "Q" indicating
"straight-octal” [nnnQ]). NOTE: OCTAL
was selected since it is used as the front
panel input for the H8 as well as the
"command mode" input of the H89.

2, PUT FIVE IN B, (MVI B,FIVE or MoVe
Immediate to the B register, #5) the next
block of our chart, places the number
five in a thing called the "B register"
of the CPU. (There are seven registers
in the 8088 CPU each of which has a letter
assigned A,B,C,D,E,H,L.) As will be seen,
we can manipulate these "registers" to
provide useful functions.

3. CALL HORNO is our next step. The
"CALL" is an instruction to the CPU which
is EXACTLY like the GOSUB instruction
used by BASIC. 1In fact, if you examine

3 REMark « [ssue 15 « 1981

PUT 5 IN B

CALL HORNO

WAIT

DCR B

NO

IS B=0

YES

JMP HDOS

END

fig. A

the routine or listing for your monitor,
under "HORNO", you will find somewhere
a "RET" which is the same as a RETURN
in BASIC thus completing the "GOSUB".
(Easy isn't it!) Therefore, we can safely
say that this "block" of our chart is
a GOSUB routine that makes the "bell"
ring one time!

4. WAIT is the next step of our program.
WAIT is also an independent program within
a program. This particular step causes
a time delay and son-of-a-gun
it's the same as a PAUSE in BASIC (more
on this later).

S REMark « Issue 15 = 1981

5. DCR B is performed after WAIT. DCR
B means that we subtract one (-1) from
the original value of B (5 I think!).
If we put five in B to begin with, we
better have four after this step was
performed. (Getting easier!)

6. Now it is DECISION time! "IS B=@"
is the funny looking block that is used
to determine if certain conditions have
been encountered. In our program, we
want to know if the B register is equal
to zero YES or NO. If the answer is "NO"
the program does a GOTO (BASIC again)
or JNZ (Jump Not Zero) back to HORNO.
If the answer is "YES" the program moves
on to the next block. You will note
that in each successive pass the B
register is decremented by one (-1) until
B=6@. When B is zero, our program
continues.

7. JMP HDOS is a GOTO (again!!!) or JuMP
(unconditional) which passes from our
"beeper" back to the HDOS prompt (>).
Without going into great detail, this
block was added to allow us to "get out"
of our routine while NOT requiring a RESET
to do so. (You experienced programmers
««s. QUIET PLEASE!!l!).

B. If you require an explanation of the
last "block", GOTO the beginning of this
article and type RESUME!!!

WAIT TAKE-A-PART

As mentioned earlier, our program contains
three smaller programs. One is the
counter, one is the "CALL" to HORNO which
is a program built into the computer,
and the last is WAIT, a program which
we will examine fully. NOTE: WAIT will
give you a good idea of just how fast
a computer can perform a task once we
get to the point of running our completed
project. Further, note the similiarity
of the WAIT routine to the NESTED FOR-NEXT
LOOP used in common BASIC programs.

WAIT contains six major parts or
"blocks" (see fig. C). . All of these blocks
would normally be compressed into the
single block called WAIT in the -main
program FLOW CHART (see fig. A).

1. The first two blocks perform the same
function. Therefore, we will discuss
these together. Block one and block two
PUT A NUMBER IN the. D and E registers.
The number selected was 3770 (remember
straight-octal). This number is equal
to 255 decimal. If you examine the
Definition of Program Terms (see fig. B)
you will see that TIMEl and TIME2 are
"equated" to this number (377Q). If you
were to select any other number (3770
is the largest you could use here) the

kkkkkkkk START

START

ORG

100000A

(BLOCK $#1) **kkkdsks

STARTING ADDRESS (LINE NUMBER)

kxkkrkk* DUT §5 IN B (BLOCK $2) **asskix

*kk**xx** CALL HORNO (BLOCK #3)

LOOP

MVI

CALL

B,FIVE

HORNO

PUT #5 IN "B" REGISTER

khkkkdkkkh

GOTO MONITOR ROUTINE TO ACTIVATE "BELL"

*kkkkkkk WAIT (BLOCK #4) *kkkkksks

MVI D, TIME1
LOOP2 MVI E,TIME2
LOOP3 DCR E
JINZ LOOP3 IF "E"
DCR D
JINZ LOOP2

PUT # IN "D" REGISTER FOR DELAY COUNT

PUT # IN "E" REGISTER FOR DELAY COUNT
DECREMENT "E" REGISTER BY ONE

IS NOT ZERO, DECREMENT AGAIN (LOOP3)
WHEN "E" IS ZERO, DECREMENT D BY ONE

IF "D" IS NOT ZERO, RELOAD "E" WITH “TIME2" (WAIT)

###**k*x** DECREMENT B REGISTER (BLOCK §5) #*#*#**wak

k*k*xx DECISION - IS B=# (BLOCK #6)

DCR

JNZ

B

LOOP

DECREMENT "B" BY ONE (OF FIVE)

khkkhkkkkk

IF "B" IS NOT @ THEN GOTO HORNO (BLOCK #3)

kkkkkkk* GOTO HDOS (BLOCK #7) **kkkkka

JMP

HDOSP

*kxkkk** DEFINITIONS OF

FIVE EQU 2850
HORNO EQU B@2136A
TIME1 EQU 377¢Q
TIME2 EQU 3770
HDOSP EQU 040100A

kk*kxkk* END (BLOCK #8)

END

START

JUMP (GOTO) HDOS PROMPT TO FINISH PROGRAM

PROGRAM TERMS (EQUATE TABLE) ****%%x%

FIVE = FIVE IN DECIMAL, HEX, OR OCTAL

THIS IS THE ADDRESS (LINE NUMBER) FOR THE "BELL"
SOME #, THE AMOUNT INDICATING TIME DELAY

SOME #, THE AMOUNT INDICATING TIME DELAY
ADDRESS (LINE NUMBER) FOR RETURN TO HDOS PROMPT

dkdkdokdkh ok

THE "END" STATEMENT LOOPS TO THE "START" LABEL

*** NOTE: The "END" block appears after the DEFINITIONS which ARE NOT
considered a portion of the flow chart "blocks".

fig. B
WAIT would be less between "beeps" in 5. BAgain a decision is requested (IS
our main program. D=@, YES or NO). However, if the answer

2. As discussed earlier,
subtracts one
original value of E (255 decimal).

DCR E,

T Decision time!

(=1)

"IS E=g"

the next block,

is NO or D is not equal to zero,
the E register gets "loaded" for another
count of 255D. When D is zero, control
is passed to our main program.

then

from the

YES or NO SUMMARY on WAIT

then creates a loop for 255 counts per
the original value of E.

4. Now we DCR D or subtract one (-1)
from D which had an original value of
255D.

For every two-hundred fifty-five counts
of E (decrements), D is decremented by
one (-1). Therefore, the computer must
subtract 255 x 255 times to get out of
this NESTED loop or perform roughly 65,000

SREMark = Issue 15 » 1981

FROM MAIN PROGRAM

PUT NO. IN D

s PUT NO. IN E
- DCR E
No_<::jEE§§::::;>
YES
DCR D
NO
IS D=0
YES

TO MAIN PROGRAM

fig. C

steps to return to the original program.
Amazing isn't it!!!

LET'S GET GOING

Well, we have DEFINED our work. We have
looked at the FLOW needed for the computer
to DO the work. Now it's time to "talk"
to our machines or get them to
"co-operate" with us! 1In the next issue
of REMark, we will explore the use (or
misuse!) of the HDOS Editor and Assembler
in an effort to get this "mess" to run!

BE:

HREMark = Issue 15 « 1981

PAGED:
A Text Editor Anyone Can Use

By Scott Witt
79 0ld Haverstraw Road
Congers, New York 10920

Word-processing is one of the most
practical uses to which a microcomputer
can be put, but most text editing programs
are so cumbersome that they're a nuisance
to use. A long list of commands must
be memorized, and a simple slip of the
finger can wipe out a text file reflecting
many hours of work. Even the accomplished
programmer soon tires of the time
consuming and burdensome procedures
required to prepare and edit text and
assembly language listings.

That's certainly the way I felt after
using some of the editor programs that
were available for my H8 a couple of years
ago. As a freelance writer with a
contract to produce a book a year for
a major American publisher, I needed a
program that would enable me to enter
and edit text rapidly. The hardware was
there: the H19 terminal is extremely
well suited for text-editing, and the
H17 disk units provide rapid and reliable
storage and retrieval of material. But
the software was lacking. So, I wrote
my own editor, designing it to be simple
to operate and efficient to use. And
then, thinking other people might benefit
from an editor program that combines power
with ease-of-use, I made it available
to HUG members. (HUG P/N 885-1079 $25.00.)

It would be an understatement to say that
PAGED (short for Page Editor) was well
received. I've had mail from around the
world and telephone calls from throughout
the United States from enthusiastic users
who say they've abandoned programs costing
many times as much in favor of PAGED.

*An office manager from New Jersey said
that seeing PAGED demonstrated in the
local Heathkit Store convinced him to
lay out several thousand dollars for an
H19 and Diablo printer for his business.

*A Heathkit computer user from The
Netherlands wrote: "As a writer of
extensive assembly language programs as
well as Fortran programs, I would like
to thank you for the editor 'Paged' under
HDOS. It's certainly a significant
improvement over other editors I‘'ve used.
More efficient and safer to use, it can
also be used by non-programmers due to
the extensive prompting."

(vectored to page 11)

H11 FORTRAN vs. BASIC

by Dr. Peter Vijlbrief, M. D.
Schoonoord 26
2155 ED Voorhout
The Netherlands

Editor's Note: The following two programs were sudmitted by Dr. Vijlbrief for our
H-11 users. They are FORTRAN (listing 1) and BASIC (listing 2) versions of the
popular "MASTERMIND" game. For those of you unfamiliar with MASTERMIND, it is a
number guessing game. The player must find a hidden four digit number while the
computer tells him how many digits are correct and in the correct places. These
two programs give those familiar with BASIC but not with FORTRAN a chance to see
how FORTRAN works. Our thanks to Dr. Vijlbrief for these programs,

Listing 1. MASTERMIND in FORTRAN (HT-11)

MASTERMIND IN FORTRAN
AUTHOR: DR. P. VIJLBRIEF - VOORHOUT

sNeNe!

TYPE 1
1 FORMAT (24X'MASTERMIND' /24X ' **dkkkkkkk? //

1 18X'THE COMPUTER HAS A HIDDEN NUMBER OF FOUR DIFFERENT'/
19X'DIGITS. YOU HAVE TO FIND THAT NUMBER.'/
10X'ENTER FOUR DIGITS AND HIT RETURN <CR>. THE COMPUTER DISPLAYS'/
10X'YOUR NUMBER AND FLAGS IT WITH TWO DIGITS SEPARATED'/
10X'BY A SLASH (C/W). THE FIRST DIGIT (C) COUNTS THE'/
1@X'RIGHT DIGITS IN THE CORRECT PLACE, THE SECOND'/
18X'DIGIT (W) COUNTS THE RIGHT DIGITS IN THE WRONG PLACE.'/
1@X'IF YOU CAN NOT FIND THE HIDDEN NUMBER, TYPE @A@@8€ <CR>,'/
18X'THE COMPUTER GIVES YOU THE ANSWER.'//)

WO oUW

THIS NUMBER IS THE SEED FOR A RANDOM NUMBER GENERATOR

nnoo

TYPE 2

FORMAT (10X'TO START THE GAME, ENTER A TWO DIGIT NUMBER:'//)
ACCEPT 3, K,M

FORMAT (2T1)

%]

INITIALIZE

ONOw

AVER=#
ITURN=@
TURN=@
TOT=0

BEGIN GAME

TRY=0

ITRY=0
ITURN=ITURN+1
TURN=TURN+1

NoNeNe!

MAKE RANDOM NUMBER (FOUR DIFFERENT DIGITS, FIRST NOT=ZERO

=Y Y

g IONE=INT (RAN (K, M)*1@.,)
IF (IONE*1l) 20,18,20
20 ITWO=INT (RAN (K, M) *18.)
IF (ITWO-IONE) 38,280,380
30 ITHREE=INT (RAN (K, M) *10.)
IF ((ITHREE-IONE)*(ITHREE-ITWO)) 44,390,480
49 IFOUR=INT (RAN (K,M) *10.)
IF ((IFOUR-ITHREE)* (IFOUR-ITWO) * (IFOUR-IONE)) 58,48,50

INITIALIZE FO BEGIN OF PLAYER'S GUESS

nmanon

2 IGO0OD=¢

4REMark « Issue 15 « 1981

ao0n

3@
35¢@
400

450
500
550

600
650

IWRONG=0
TRY=TRY+1.
ITRY=ITRY+1

PLAYER'S GUESS
ACCEPT 3006, JONE,JTWO,JTHREE,JFOUR

DOES PLAYER QUIT?

IF (JONE+JTWO+JTHREE+JFOUR) 55,50@,55
SEARCH FOR CORRECT DIGITS IN CORRECT PLACES

IF (JONE-IONE) 70,6@,70
IGOOD=IGOOD+1

IF (JTWO-ITWO) 90@,88,90
IGOOD=IGOOD+1

IF (JTHREE-ITHREE) 116,160,119
I1GOOD=1GOO0D+1

IF (JFOUR-IFOUR) 130,120,138
I1GOOD=1GOO0D+1

SEARCH FOR CORRECT DIGITS IN WRONG PLACES

IF ((JONE-ITWO)* (JONE-ITHREE)* (JONE-IFOUR)) 156,148,150
IWRONG=IWRONG+1

IF ((JTWO-IONE)* (JTWO-ITHREE)*(JTWO--IFOUR)) 178,168,170
IWRONG=IWRONG+1

IF ((JTHREE-IONE)* (JTHREE-ITWO) * (JTHREE-IFOUR)) 196,180,190
IWRONG=IWRONG+1

IF ((JFOUR-IONE)* (JFOUR-ITWO)* (JFOUR-ITHREE)) 210,207,218
IWRONG=IWRONG+1

DISPLAY GUESS NUMBER AND FLAG IT

TYPE 350, JONE,JTWO,JTHREE,JFOUR,IGOOD,IWRONG
FIND OUT IF GUESS IS ALL CORRECT?

IF (IGOOD-4) 5@,220,58

FIGURE OUT AND DISPLAY SCORE

TOT=TOT+TRY
AVER=TOT/TURN
TYPE 408, ITRY,AVER

ASK FOR ANOTHER GAME

ACCEPT 458,MM

IF (MM-1) 606,5,600

FORMAT (4I1)

FORMAT ('+',3@X,12,12,12,12,13,'/',I1)
FORMAT (//'YOU FOUND IT IN ',I2,' TRIES.'
1 /'YOUR AVERAGE IS: ',F4.1,' TRIES.'

2 /'WANT ANOTHER GAME ? TYPE 1, ELSE @.')
FORMAT (I1l)

TYPE 558, IONE,ITWO,ITHREE,IFOUR

FORMAT (//' THE RIGHT ANSWER IS: ',4I2)
STOP

GIVE END SCORE

TYPE 65¢, ITURN,AVER

FORMAT (//' YOU HAVE FOUND ',I2,' NUMBERS IN AN AVERAGE'/
1 ' OF ',F4.1,' TRIES.')

END

SrREMark « Issue 15 « 1981

10

Listing 2. MASTERMIND in BASIC (HT-11)

320
339
349
350
360
370
3880
392
400
410
420
430
449
450
460
470
480
490
500
5189
520
530
540
550
568
570
580
598
600
610
620
630
640
650
660
670

REM AUTHOR: DR. P. VIJLBRIEF, VOORHOUT, THE NETHERLANDS
REM
PRINT TAB(25);"MASTERMIND"
PRINT TAB(25) ;" "***kkkkkkxn
PRINT
PRINT TAB(1@);"THE COMPUTER CONTAINS A HIDDEN NUMBER OF FOUR"
PRINT TAB(1@);"DIFFERENT DIGITS."
PRINT
PRINT TAB(1@);"TRY TO GUESS THE NUMBER."
PRINT
PRINT TAB(1@);"ENTER A FOUR DIGIT NUMBER, SEPARATED BY COMMAS:"
PRINT TAB(10);"X,X,X,X <CR>"
PRINT
PRINT TAB(1@);"THE COMPUTER DISPLAYS YOUR NUMBER AND FLAGS IT"
PRINT TAB(10);"WITH TWO DIGITS, SEPARATED BY A SLASH (C/W)."
PRINT TAB(1@);"THE 'C' TOTALS THE AMOUNT OF RIGHT DIGITS IN THE"
PRINT TAB(1@);"CORRECT PLACE AND THE 'W' TOTALS RIGHT DIGITS IN"
PRINT TAB(1@); "WRONG PLACES."
PRINT
PRINT TAB(1@);"IF YOU CAN'T FIND THE CORRECT NUMBER, ENTER:"
PRINT TAB(1@);"@,0,8,08 <CR>. THE COMPUTER GIVES YOU THE ANSWER"
PRINT TAB(1@);"BUT THE GAME IS OVER !"
REM 'G' IS THE NUMBER OF GAMES PLAYED.
REM 'T' IS THE TOTAL OF TRIES TO GUESS THE NUMBER IN ALL GAMES."
REM 'Cl' AND 'W' ARE THE CORRECT AND WRONG DIGIT COUNTS."
REM 'N' IS THE NUMBER OF GUESSES IN ONE GAME.
REM INITIALIZE
LET G=0
LET T=@
LET N=@
REM MAKE THE HIDDEN NUMBER AT RANDOM, FIRST DIGIT NOT ZERO
LET G=G+1
RANDOMIZE
A=INT (RAN (8)*10)
IF A=0@ THEN 340
B=INT (RAN (@) *10)
C=INT (RAN (0) *14)
D=INT (RAN(B)*1@)
IF A=B THEN 34@\IF A=C THEN 340\IF A=D THEN 340
IF B=C THEN 34@\IF B=D THEN 340
IF C=D THEN 340
REM A,B,C,D ARE THE FOUR DIFFERENT DIGITS OF THE HIDDEN NUMBER
LET Cl=@
LET W=0
PRINT
INPUT P,Q,R,S
REM P,Q,R,S ARE THE PLAYER'S GUESS
REM DOES THE PLAYER QUIT?
IF P+Q+R+S5=@ THEN 930
REM SEARCH FOR RIGHT DIGITS IN RIGHT OR WRONG PLACES
IF P<>A THEN 53@
Cl=Cl+l
IF P=B THEN 540 \IF P=C THEN 548 \IF P<>D THEN 5580
W=W+1
IF Q=A THEN 56@ \IF Q=C THEN 56# \IF Q<>D THEN 570
W=W+1
IF R=A THEN 58@ \IF R=B THEN 5806 \IF R<>D THEN 59@
=W+1
IF S=A THEN 68A \IF S=B THEN 688 \IF S<>C THEN 618
W=W+1
IF Q<>B THEN 630
Cl=Cl+l
IF R<>C THEN 65¢
Cl=Cl+1
IF S<>D THEN 67@
Cl=Cl+l
REM CANCEL LINEFEED AND REMOVE PLAYER'S INPUT (H19)

$REMark = Issue 15 = 1981

680 PRINT CHRS$(27);CHRS$(A5);TAB(2@);P;" ";0;" ";R;" ";5;"

690 REM COUNT TRIES

700 N=N+1

718 REM LOOK FOR END OF GAME
720 IF Cl<4 THEN 43¢

730 PRINT

";C];"/“;w

740 PRINT TAB(1@);"YOU FOUND THE NUMBER IN ";N;" GUESSES !"
758 REM COUNT THE TOTAL NUMBER OF GUESSES

768 T=T+N

778 REM DON'T GIVE AVERAGES AFTER ONE GAME

780 IF G=1 THEN 8@¢

79¢ PRINT TAB(14);"YOUR AVERAGE IS ";T/G;" GUESSES,"

88@ PRINT

81@ PRINT TAB(1d);"ANOTHER GAME ? (TYPE YES OR NO)"

82¢ INPUT YS$
83¢ IF YS$S=“"YES" THEN 87¢
84¢ IF YS$="NO" THEN 880

850 PRINT TAB(1@);"TYPE 'YES' OR 'NO'"!"

860 GOTO 820

876 PRINT \PRINT "TYPE YOUR GUESS: "\GOTO 38f

880 PRINT

896 PRINT TAB(10);"AFTER ";G;" GAMES YOUR AVERAGE OF GUESS TO FIND"
9¢@ PRINT TAB(1@);"THE HIDDEN NUMBER WAS ";T/G

91@ PRINT TAB(1@);"THANKS FOR PLAYING

92@¢ END
93@ PRINT

949 PRINT TAB(18);"THE HIDDEN NUMBER WAS ";"

950 STOP

(vectored from page 7)

*A math professor from the University
of Utah wrote: "Your editor rivals TV-Teco
on the DEC. The members of the Heath
Users' Group here in Salt Lake City feel
that no other editor available is as easy
to learn and use as PAGED."

The "extensive prompting" mentioned by
the user from The Netherlands is something
that was missing from editors I used prior
to PAGED. When your mind is engrossed
in writing a program (or, in my case,
the chapter of a book) it's easy to lose
your train of thought if you must recall
a complex series of commands merely to
change a word or paragraph. Computers
being powerful instruments, there's no
reason why any good program shouldn't
be extremely easy to use.

Here are just a few of PAGED's built-in
features:

ONE-LETTER COMMANDS. If you want to insert
some lines, merely type "I" and the
computer will display the entire word
INSERT on the screen and then ask you
where you want the insert to go. The
same with E(dit) and all of the other
commands. Rather than your having to
remember to enter commands in a set
pattern, the program asks you for the
information it requires, and all of it
is entered with a keystroke or two,

AUTOMATIC MARGIN.
computer,
use of

When you're using a
you might as well make full
its computational capability,

HREMark « Issue 15 « 1981

N;A:l! “;B,'. ".'.C:“ ";D

EQF

Thus PAGED has an option in which it will
automatically start a new line once the
current line has taken all the words it
can. You don't have to watch the screen
to keep track of the cursor, and you need
never hit the carriage return key. If,
upon later editing, the length of a line
is changed, a simple command will
re-format the entire paragraph -- or
entire page, for that matter. A block
of text that is, say, 72 characters wide
can be narrowed to, say, 20 characters
as fast as you can sneeze.

DOUBLE~-SPACING. Need double-spaced
material, but want to cram as much of
it on the screen as you can? Then enter
it in single-space format; when you're
through, tell the program to double-space
your material., A similar command does
the reverse -- changing double-spaced
material to single-spacing.

DISK RESET. Once PAGED is loaded into
memory, you can reset, or even dismount,
disks at will. You can even operate with
no disks in the machine at all.

FILE STREAMING. Your file, be it text
or a program listing, may be longer than
the memory capacity of your computer
allows. PAGED lets you stream it in to
memory for editing, and then out to disk
so that more material can be brought in.

FILE VERIFICATION. When streaming text
into and out of a program, it's easy to
forget which file is which. The "Verify"

(vectored to page 15)

11

Using RDT to Make a Hex-Octal Assembler

This article presents modifications to
the new HDOS 2.0 assembler and its cross
reference utility (XREF) that allow you
to select output of addresses and data
in either hex or octal. It also
illustrates one of the uses of the RDT
debugging tool (HUG part no. 885-1092)
that was introduced in REMark issue §l4.
To make these modifications, you will
need:

1. An HDOS 2.0 system disk.

2. A working disk containing ASM, XREF,
and RDT (unless they are on your system
disk) and ample work space. You will
also need an editor on one of the disks.

Listing 1 is the source for the
modification for the assembler, and
listing 2 is the XREF modification. Type
them in with your editor and assemble
them. Then run RDT. Since this
modification is obviously of interest
to those who like hex notation, we will
perform the work in hex. The first
command we need to give to RDT, then,
is

]BASE HEX

RDT is now set for input and output in
hex. What we are doing to do with it
is combine the .ABS files you just made
with the assembler and cross reference
programs. The RDT instruction manual
explains how to merge .ABS files like
this. In this case the patch is not
within the program but after it, so you
might think that you can simply load the
assembler, then load the patch, then save
the whole thing back on disk. But it
cannot be done that way because an .ABS
file actually starts 8 bytes before its
ORG address, and the patch would overwrite
the end of the assembler. (Those 8 bytes
contain the machine code I D, the
program's origin, it's size, and it's
entry point.) So we will use the method
presented in the RDT manual. The first
thing to do is load the patch for the
assembler. If it is named ASMEXT.ABS,
we would type

]JLOAD SY1:ASMEXT (you type this)
STARTS
ENDS

4208
4292

(RDT prints this)

RDT prints the starting and ending
addresses of the patch in hex. The next
step is to move the patch out of the way
so it will not be overwritten by the
assembler when we load it (because its
end address is rounded up to the next
256 byte boundry by HDOS). We can move

12

the patch by typing

JMOVE 42@8,4292,5208

The patch is now exactly 100¢H bytes
farther up in memory. Now, we can load
the assembler:

JLOAD SY1:ASM

2280
4287

STARTS
ENDS

Now all we have to do is move the patch
back down and save the combined file on
disk:

]MOVE 5208,5292,4208
]SAVE SY1:ASM,22804,4292,4208

The third address given in the SAVE
command is the program entry point, which
in this case is the entry point of the
patch. When the assembler is run, it
will start at that point. Note that the
old assembler on SYl: is wiped out when
we save the new one. We could have given
the new one a different name and/or saved
it on another disk to avoid erasing the
old one.

We can now modify the XREF program using
the above procedure. CAUTION: This patch
is for the HDOS 2.0 XREF.ABS, not the
HUG XREF.ABS. The RDT command sequence
is as follows:

JLOAD SY1:XRFEXT

STARTS
ENDS

2DE7
2E1A

JMOVE 2DE7,2ElA,3DE7

JLOAD SY1:XREF

STARTS
ENDS

2288
2DE6

]MOVE 3DE7,3E1lA,2DE7
JSAVE SY1:XREF,2280,2E1A,2DE7

As with the assembler, we could have given
the cross reference program a different
name when we saved it, but it would have
to be renamed back to XREF.ABS before
we ran it because the assembler links
to a file with that name when you ask
it to do a cross reference.

OPERATION

The patched assembler can be used in the
immediate mode or command mode in the

SrREMark « Issue 15 = 1981

same way as the old assembler, except
that it will ask you for the base you
want. In the immediate mode, it looks
like this:

>ASM SY1:ASMEXT=5Y1:ASMEXT
Modified Heath Assembler
Want Hex or Octal? (H or 0) <O0> _

As soon as you type an H or 0O, the
assembly starts. The default is octal,
So any key hit other than H will produce
octal output. You can hit RETURN twice
after the command line if you want octal.
Hex mode will be set if you type either
an upper or lower case H. If you use
the command mode, it looks like this:

>ASM
Modified Heath Assembler
Want Hex or Octal

(H or 0) <0> H

HDOS ASseMbler Issue #104.06.00

*

HOW THE PATCHES WORK

Both the assembler and cross reference
programs have routines that cause binary
numbers to be converted to ASCII in octal
notation. The patches replace those
routines with ASCII hex output routines
when you specify hex. The assembler patch
also removes the code that puts a period
between the upper and lower bytes of an
address if you specify hex. If you tell
the assembler that you want a cross
reference, it links to the XREF program
when it finishes assembling. Since the
end of the XREF program falls below the
hex patch in the assembler, it is still
there for the XREF extension to examine.
If it finds that the assembler has been
patched, it patches the cross reference
program as well, so both will produce
hex output. 1In addition to patching the
output routine, the XREF patch also has
to replace two ASCII zeros with spaces.
If that is not done, hex addresses will
have two trailing zeros in the cross
reference listing.

PS:

'"EXTENSION TO THE HEATH ASSEMBLER'

Listing 1. Modification for ASM
TITLE
STL 'BY PATRICK SWAYNE

* ASMEXT.ASM

24-DEC-80"'

* THIS IS AN EXTENSION TO HEATH'S ASSEMBLER VERSION 104.06.00
* IT ALLOWS THE USER TO SELECT OUTPUT IN OCTAL OR HEX

ORG 4208H

FIRST ADDRESS AFTER ASM

* EXTERNAL REFERENCES AND CONSTANTS

SMOVE EQU 18AAH H17 ROM MOVE ROUTINE
STYPTX EQU 195EH STRING PRINTER
CRLF EQU 0AH CR - LF
OLDSTRT EQU 3B6CH OLD ASM ENTRY POINT
NUMO EQU 34AFH NUMBER OUTPUT ROUTINE
PERIOD EQU 326EH PERIOD OUTPUT ROUTINE
SCONASC EQU 34B8H CONASC ADDRESS IN ASM
.SCIN EQU 1 HDOS INPUT ROUTINE
.SCOUT EQU 2 HDOS OUTPUT ROUTINE
.CONSL EQU 6 CONSOLE SETUP ROUTINE
.CLRCO EQU 7 CLEAR CONSOLE
START CALL STYPTX
DB CRLF,'Modified Heath Assembler',CRLF
DB CRLF,'Wwant hex or octal? (H or Q) <0>',2480Q
XRA A
LXI B,8181H
SCALL .CONSL SET UP CONSOLE FOR SINGLE CHAR
INCH SCALL .SCIN
Jc INCH GET RESPONSE
SCALL .SCOuT ECHO CHARACTER
ANI S5FH MAKE CAPITAL
CPI L HEX?
JNZ EXIT WANT OCTAL, START THE ASSEMBLER
LXI H,NUMO
LXI D,HEXOUT SET POINTERS
LXI B,HEXEND-HEXOUT NO. OF BYTES TOQO MOVE

#eREMark « Issue 15 « 1981

13

14

CALL $MOVE INSERT HEX OUTPUT ROUTINE

XRA A ZERO IN A
LXI H, PERIOD PERIOD OUTPUT ROUTINE
MoV M,A ZERO IT OUT
INX H
MOV M,A
INX H
MoV M,A
EXIT MVI A,CRLF
SCALL .SCOUT PRINT CR, LF
SCALL .CLRCO MAKE SURE CONSOLE IS CLEAR
XRA A
LXI B,8FFH
SCALL .CONSL RESTORE CONSOLE TO LINE MODE
JMP OLDSTRT GO TO ASSEMBLER

* HEX OUTPUT ROUTINE
* REPLACES THE OCTAL OUTPUT ROUTINE
* IN THE ASSEMBLER IF NEEDED

HEXOUT PUSH PSW SAVE BYTE
RRC GET HIGH NIBBLE
RRC
RRC
RRC
CALL SCONASC CONVERT TO ASCII
POP PSW RESTORE BYTE
CONASC ANI @FH GET LOW NIBBLE
ADI 90H CONVERT TO ASCII
DAA
ACI 40H
DAA
MoV M,A STORE NUMBER
INX H MOVE POINTER
RET
HEXEND EQU *
END START

Listing 2. Modification for XREF

TITLE 'EXTENSION TO THE HEATH XREF UTILITY'
STL 'BY PATRICK SWAYNE 24-DEC-8@'
XRFEXT.ASM

THIS IS AN EXTENSION TO THE ASSEMBLER'S XREF UTILITY
THAT DETERMINES WHETHER NUMBERS SHOULD BE OUTPUT IN
OCTAL OR HEX, AND MODIFIES XREF IF REQUIRED.

* * * *

* EXTERNAL REFERENCES, ETC.

SMOVE EQU 18AAH H17 ROM MOVE ROUTINE
OLDSTRT EQU 2280H OLD XREF STARTING POINT
ZEROS EQU 27BDH ASCII ZEROS ARE HERE
NUMO EQU 2CB6H NUMBER OUTPUT ROUTINE
PATCH EQU 34AFH ADDRESS OF PATCH IN ASM
$CONASC EQU 2CBFH CONASC ADDRESS IN XREF
MI.PPSW EQU @F5H PUSH PSW INSTRUCTION
SPACE EQU 20H ASCII SPACE

ORG 2DE7H FIRST ADDRESS AFTER XREF
START LDA PATCH

CP1 MI.PPSW IS ASM MODIFIED?

JNZ OLDSTRT IF NOT, START XREF

LXI H,ZEROS POINT TO ASCII ZEROS

MVI M,SPACE REPLACE WITH SPACE

INX H MOVE TO NEXT ZERO

MVI M,SPACE REPLACE WITH SPACE

$-REMark « Issue 15 » 1981

LXI H,NUMO

TN D,HEXOUT SET POINTERS
LXI B,HEXEND-HEXOUT NO. OF BYTES TO MOVE
CALL $SMOVE INSERT THE HEX ROUTINE
JMP OLDSTRT IF SO, START XREF

* HEX OUTPUT ROUTINE

* REPLACES OCTAL ROUTINE IN XREF

* IF NECESSARY

HEXOUT PUSH PSW
RRC
RRC
RRC
RRC
CALL $CONASC
POP PSW
CONASC ANI BFH
ADI 90H
DAA
ACI 40H
DAA
Mov M,A
INX H
RET
HEXEND EQU %
END START

(vectored from page 11)

command tells you at a glance which files
are open for read and write.

PAGE FORMAT. The program deals in "pages"
which are really 24-line screenfuls of
text (the 25th line on the screen is the
command-line). Thus the first 24 lines
of your file constitute Page 1, with
succeeding pages made up of ensuing blocks
of 24 lines each. Editing and the other
commands deal with the page that is
displayed on the screen at the time. You
can jump to any page at will. Each line
on the page is numbered so you can refer
to a particular line for editing merely
by entering the line number. In addition,
there's a multi-edit capability that
allows you to edit a particular string
wherever it appears.

LINE CENTERING. Sometimes the simplest
of features can come in the most handy.
Centering a line of type, as in the title
of an article, is easily accomplished
with PAGED.

There are, of course, many other useful
features contained in PAGED. What you've
seen above are just some of the goodies
that help make it easier to use. A man
from the West Coast called to say he'd
finally found a program that his wife
could use. She knows nothing about
computers and doesn't want to learn.
But she does need to do word-processing,
and she finds PAGED a snap.

SREMark » Issue 15 « 1981

SAVE BYTE
GET HIGH NIBBLE

CONVERT TO ASCII
RESTORE BYTE
GET LOW NIBBLE
CONVERT TO ASCII

STORE NUMBER
MOVE POINTER

EOF

What makes it equally gratifying to me
is the fact that professional programmers
also find PAGED a great help. One of
them wrote: "It has been four months since
the purchase of your editor. During this
time it has served as my development
editor for a number of programs. I use
an H89 connected via a modem to a DEC-20
or PDP-11/60."

And, finally, this comment from a HUG
member : "I'm pleased to see that HUG
is offering this, and many other useful
programs, at a fraction of what they might
cost in the commercial marketplace. They
have made my computer a tool instead of
a toy 3 L

EOF

H8COMM/H89COMM Modification

885-1P843 Mod for HDOS 1.6

A simple modification to the TRANSUB.ACM
file will allow the HB8COMM/H89COMM to
operate under version 1.6 of HDOS.

The modification is to add an asterisk
(*) in front of the TWO lines that have
"STA - ZFLAG" near the beginning of the
TRANSUB.ACM source code file. A
reassembly is required before operation.

EOF

15

New HUG Software

885-1207 TERM and H8COPY $20.00
TERM was developed for HUG by Jim
Buszkeiwicz of the Heath Technical
Consultation Group as a CP/M answer to
CPS. It is capable of providing the
following features:

1. Full or half duplex operation
2. It can send or recieve disk files.
3. 1t works on H8's and H89's.

4., It can automatically log on to TIMENET
or MicroNET

TERM comes with full documentation on
disk. It is designed to work with CP/M
version 2.0 or higher.

HBCOPY allows you to copy files from HDOS
to CP/M. The program comes in assembly
source and can be assembled for either
ORG 4200H CP/M or ORG 0 CP/M by changing
an EQUate. It has two modes of operation,
direct and ASCII. 1In the direct mode,
a file is copied as is. 1In the ASCII
mode, HDOS newline characters are replaced
with the carriage return-line feed
sequence used in CP/M as the file is
copied. The ASCII mode also can convert
the @ sign used to extend logical lines
in HDOS MBASIC to the reverse carriage
return-line feed sequence used in CP/M
MBASIC if you wish.

Movin’ On

by Terry Jensen

It's inevitable...every place of business
gets hit sooner or later by "growing
pains" by its customers and "advancing
pains" by its personnel...well, once again
both of these pains have hit HUG.

HUG's continued growtn as any other
business demands more from its services
and our new "Chief" is attacking this
growth head-on (more later). Sometimes,
however, little is noticed of the employee
that moves on to higher "rungs" of
employment.... well, here in HUG, we do
indeed miss the loss of Jon Falkner as
part of the "gang".

Jon has moved back into Heath Company
where his technical knowledge will be
utilized helping the Heath customer.
1 fortunately had the opportunity to work
with Jon for about three months... soaking
his brain any chance I could for facts,
short-cuts and generally any knowledge
I could use to help me learn. Most of
the time I was getting more than I could

16

handle, Well, now Jon is gone and yours
truly must "fill his shoes". No easy
task!!l

"Boss" Bob has now had time to evaluate
HUG and its purpose and he has some
excellent ideas and intentions. "“Captain"
Bob has issued his "orders" and we are
determined to carry out those "orders".

As for myself, I am now in the
exasperating position of sitting in Jon's
old office with "Big Bad" Bob lerking
over my shoulder. Am I looking for
sympathy?... No... on the contrary I am
fascinated by the challenge and
opportunity I have found myself. (1
wonder how many users' would give their
right arm to be in my situation.)

As I glance around my office I see, next
to the door, a desk with a calender for
keeping notes. On the desk are two phones
one for conversation and the second for
MicroNET. Between the phones sits a
DIABLO 1640 for replying, by use of
AUTOSCRIBE, all those wonderful letters
that come in each day. Along the back
wall sits a table with an H-8, H-17 and
H=-19. Next to the table the DECWRITER
sits waiting for my next hardcopy to be
printed.

Opposite the door sits a second desk which
contains my files, disk files and
miscellaneous things. On top of the desk
is an H-11lA, H-27 system interfaced to
the H-8, H-19. Many of my personal and
"closest" Heath manuals are filed here
also. Along the last wall I find a
bookshelf where most of the manuals I
will ever need (and some I have never
seen before) are nicely and professionally
filed patiently waiting for the
opportunity to be opened and read. A
chalk board will be placed above the
bookshelf to act as a status board on
"what's happenin'" including future
projects.

Scattered on the walls around the room
are H-8, H-89 posters with every issue
of REMark (excepting issue #1). Taped
under the REMark magazines are lists,

charts, and tables easily accessable for
reference.
Finally, above and behind the H-19

terminal are good, spiritual notes and
Bible verses. 1 have been told that we
will reflect what we read and what we
place in the environment that surrounds
us,

With Jon having gone on, and Bob pressing
for good things for HUG, it is my
intention to accomplish and fulfill my
responsibilities to Jon, Bob, and
ultimately you the user!

{TLJ>

SREMark « Issue 15 « 1981

HUG Product List

Part

Number Description

Selling
Price

CASSETTE SOFTWARE

MISCELLANEOUS COLLECTIONS

885-1008 Volume I Documentation
885-1009 Tape I Cassette
885-1012 Tape II BASIC Cassette

885-1013 Volume II Documentation
885-1014 Tape II ASM Cassette H8 Only
885-1015 Volume III Documentation
885-1026 Tape III Cassette
885-1036 Tape IV Cassette
885-1037 Volume IV Documentation
885-1057 Tape V Cassette
885-1058 Volume V Documentation

UTILITIES

885-1034 Character Ed Cassette H8 Only
885-1035 ED/ASM/DEBUG Cassette H8 Only

PROGRAMMING LANGUAGES

885-1039 WISE on Cassette H8 Only
885-1040 PILOT on Cassette H8 Only
885-1045 FOCAL Cassette HB Only
885-1085 PILOT Documentation
AMATEUR RADIO

885-1027 Morse8 Cassette H8 Only
885-1028 RTTY Cassette H8 Only

HDOS SOFTWARE

MISCELLANEOUS COLLECTIONS

885-1024 Disk I HB8/HB89
885-1032 Disk V H8/H89
885-1044 Disk VI H8 /H89
885-1060 Disk VII HB8/H89
885-1062 Disk VIII H8/H89 (2 Disks)
885-1064 Disk IX H8 /H89
885-1066 Disk X HB8/H89

885-1069 Disk XIII
885-1083 Disk XVI

Misc H8/H89
Misc HB/H89

GAMES

885-1010 Adventure Disk HB8/H89
885-1029 Disk II Games 1 HB/H89
885-1030 Disk III Games 2 HB8/H89
885-1031 Disk IV Music H8 Only
885-1067 Disk XI H8/H19/H89 Games
885-1068 Disk XII MBASIC Graphic Games
885-1088 MBASIC Games Disk

UTILITIES
885-1019 Device Drivers (HDOS 1.6)

885-1022 HUG Editor (ED) Disk HB/H89
885-1025 Runoff Disk H8/H89

HREMark « Issue 15 « 1981

45 45 45t 4 4 U O O
b

11.00
11.00

+

9.00
11.00
11.00

9.00

-+ 0 4

14.00
11.00

-+

18.00
18.00
18.00
18.00
25.00
18.00
18.00
18.00
20.00

4+ 4 4 O 4 O 4

10.00
18.00
18.00
23.00
18.00
18.00
20.00

i 45 4 6 Bt

10.00
15.00
35.00

R

Digital Research Corp.

885-1043 MODEM Heath to Heath H8/H89 $ 21.00
885-1050 M.C.S. Modem for HB8/H89 $ 18.00
885-1061 TMI Load H8 Only $ 18.00
885-1063 Floating Point Disk HB8/H89 $ 18.00
885-1065 Fix Point Package H8/H89 Disk $ 18.00
885-1075 HDOS Support Package H8/H89 $ 60.00
885-1077 TXTCON/BASCON H8/H89 Disk $ 18.00
885-1079 HDOS Page Editor $ 25.00
885-1080 EDITX H8/H19/H89 $ 20.00
885-1082 Programs for Printers HB8/H89 $ 20.00
885-1092 RDT Debugging Tool HB8/HB9 Disk $ 30.00
PROGRAMMING LANGUAGES

885-1038 WISE on Disk H8/H89 $ 18.00
885-1042 PILOT on Disk H8/HB89 $ 19.00
885-1059 FOCAL-8 on Disk H8/H89 $ 25.00
885-1078 HDOS Z80 Assembler $ 25.00
885-1085 PILOT Documentation $ 9.00
885-1086 Tiny Pascal Disk $ 20.00
BUSINESS AND FINANCE

885-1047 Stocks HB8/HB89 Disk $ 18.00
885-1048 Personal Account H8/H89 Disk $ 18.00
885-1049 Income Tax Records HB8/HB89 Disk §$ 18.00
885-1051 Payroll H8/H89 Disk $ 50.00
885-1054 SmBusPkg II 3 Disks HB8/H19/H89 $ 60.00
885-1055 MBASIC Inventory Disk H8/H89 $ 30.00
885-1056 MBASIC Mail List H8/H89 Disk $ 30.00
885-1070 Disk XIV Home Finance H8/H89 $ 18.00
885-1091 Grade and Score Keeping $ 30.00
AMATEUR RADIO

885-1023 RTTY Disk H8 Only $ 22.00
885-1052 Morse8 Disk H8 Only $ 18.00
H11 SOFTWARE

885-1008 Volume I Documentation $ 9.00
885-1033 HT-11 Disk I $ 19.00
CP/M SOFTWARE (version 1.43 -- ORG 4200H)
385-1201 CP/M (TM) Volumes H1 and H2 $ 21.00
885-1202 CP/M Volumes 4 and 21-C $ 21.00
885-1203 CP/M Volumes 21-A and B $ 21.00
885-1204 CP/M Volumes 26/27-A and B $ 21.00
885-1205 CP/M Volumes 26/27-C and D $ 21.00
885-1206 CP/M Games Disk $ 21.00
CP/M SOFTWARE (version 2.2 == ORG 0)

885-1027 TERM and H8COPY $ 20.00
MISCELLANEQUS

885-0017 H8 Poster $ 2.95
885-0018 H89 Poster $ 2.95
885-0019 Color Graphics Poster $ 2.95
885-4 HUG Binder $ 5.75
CP/M is a registered trademark of

17

$10,

FIRST

000
PRIZE!

John Hopkins Launches National Search --

Personal Computing to Aid the Handicapped

The first national search for ideas and
inventions through which the full spectrum
of personal computing technology can be
harnessed to assist the handicapped has
been announced by the John Hopkins
University.

To be conducted by the Applied Physics
Laboratory of the University, and with
the National Science Foundation and many
computer companys as co-sponsers, the
effort will be highlighted by a national
competition for ideas, devices, methods,
and computer programs to help handicapped
people overcome difficulties in learning,
working, successfully adapting to home
and community settings. Categories that
may be addressed include computer-based
aids for the blind, deaf and mentally
retarded; for individuals with learning
disabilities, neurological or

neuromuscular conditions; and the
orthopedically handicapped.
One hundred awards will be made, including

a $10,000 grand prize, personal computer
equipment, other cash prizes, computer
training and certificates of merit.
Entires will be sought from computer
specialists, full-time high school and
college students, and from interested
people generally, including those with
handicaps. Regional and national awards
will be made in all categories. National
awards will be presented at a banquet
in the fall of 1981 in the Washington,
D. C. area.

director of the Personal

Paul L. Hazan,

18

Computing to Aid the Handicapped project,
said the competition is a challenge to
the American people to use their
conceptual skills in bringing forth
practical aids based on computer
technology that will help an individial
or group of people with a handicap. "Just
as important will be the opportunity
provided the inventors and developer to
make contact and form partnerships with
the handicapped in a way that can lead
to wide acceptance and use of the new
computing technology," Hazan stressed.

Orientation meetings are being scheduled
at major rehabilitation centers throughout
the United States to bring together
potential "inventors," handicapped people
and professionals in habilitation
rehabilition fields. Special
presentations also will be made nationwide
at chapter meetings of the Association
for Computing Machinery (ACM), Institue
of Electrical and Electronics Engineers
(IEEE) , and personal computer clubs.
Contestants will have until June 30, 1981
to prepare and submit their entires,

To obtain additional information including
a descriptive flyer and contest
application, write to:

Personal Computing to Aid the Handicapped
John Hopkins University

Post Office Box 670

Laurel, MD 20810

EOF

S REMark « Issue 15 = 1981

Some Thoughts on Writing Game Programs

by Roy S. Reichert
29 Blazier Road
Warren, New Jersey 07060

We all like to play games -- especially
those that run on a microcomputer. When
you look at the software offerings in
the catalog of any User Group, HUG
included, you cannot help but notice the
high percentage of game programs offered.
I suspect, however, that just the desire
to play them is not the prime reason for
the existence of so many game programs.
The fact is that we, as owners and users
of such sophisticated systems as the
modern microcomputer, are inclined to
explore the full potential of these
systems and we want to have fun while
we do it. So, we not only play games
-- we create them as well.

It has long been recognized in the
programming field, that the development
of game programs is a valuable and highly
effective way for the programmer to
develop new techniques, algorithms and
insights into the complexities of hardware
and software. The development of games
gives the programmer the opportunity to
be creative without artificial
constraints. While not always successful
in terms of a highly popular game, the
effort is always profitable in the
experience and knowledge gained.

I too, am a fan of the computer game.
Many a pleasant hour has been spent
answering the challenge of a good board

game, searching for treasures in a
dungeon, solving an intricate puzzle,
etc. Also, I have spent many hours

writing computer games of various types,
primarily for the entertainment of friends
and family. The experience gained in
these activities has prompted me to
formulate some ideas as to the proper
approach to game design. This is
certainly not intended to be a treatise
on game theory, but simply an outline
of some common-sense ideas to be
considered in game development.

Programming is a profession. If we are
going to write a program, even for the
simplest of games, we should strive to
be professional in our approach. There
is no reason why we cannot do this and
still enjoy what we are doing. Not only
does it develop good habits, but it
creates a sense of pride in the results.

Before you develop a game program, think
about the people who will play the game.
It is most likely that they will not all
be programmers such as yourself. You
must not fall into the trap of making
assumptions about the players'

¥ REMark « Issue 15 « 1981

understanding of the computer system.
Also, do not succumb to the temptation
of taking the easy way out of a
programming problem. Except where
hardware or software limitations dictate
otherwise, take the rough road, if
necessary, to make things as clear and
sensible to the player as possible.
Failure to do so could spell doom to the
popular acceptance of your game. Remember
that you want to write it once, so others
will play it many times.

Let's briefly examine some of the things
that contribute to the enjoyment of
playing a well designed computer game.
Assuming that you have an idea for a
fantastic computer game which will make
you famous (if not rich), what can be
done to optimize the chances for success?

1. PROVIDE A "HELP" FUNCTION

For games that have a large repertoire
of input commands and/or values, the new
player has trouble remembering the options
available for play. Such a game should
provide a HELP command which can be used
to produce a summary display of all
options, commands, prompts, etc., which
may be needed. It should be made clear
to the player from the very beginning,
that the HELP command is available. Also,
this command should be available at any
time during play, if possible.

2. PROVIDE "REFRESH" CAPABILITY

This applies primarily to board games,
but would be desirable in any game where
a video display was generated at the
outset, and kept displayed throughout
the game. No matter how well regulated
the computer power-supply may be, or how
clean the power coming in may be, there
is always the possibility of a "glitch"
causing a random distortion or "smear"
of the display. Without some way of
invoking a REFRESH (or RESET) command,
the player is forced to tolerate the
damage caused to the display, or else
abort the game and start over. A proper
implementation of such a command will
erase the screen, re-display the board
(or other display) and complete the
display with all playing pieces in place
as they were before invoking the command.
A good example of such a command is the
RESET BOARD command used in the OTHELLO
game by Richard Musgrave on HUG disk
#885-1068. This feature can be used
effectively in conjunction with the HELP
command above, in cases where the display

19

uses the entire screen and the screen
must be erased in order to display a HELP
summary.,

3. PROVIDE A "HEARTBEAT"

Many games exhibit long delays during
play, while the computer performs some
internal task such as executing a
logic-tree search to determine a move,
This often happens with games written
in BASIC. During these delays, the
anxiety that builds up in a player can
be distressing.

One way to relieve this anxiety is to
give the system a "heartbeat" to assure
the player that something is indeed
happening. A common way of doing this
is to cause the computer to print a
steadily growing string of characters
on the screen. Dots (....) are frequently
used. My own preference is to use
asterisks (****) as they are more easily
discernable at a glance.

This type of heartbeat has the advantage
of showing the relative period of time
elapsed by its length. Implementation
of such a feature is via a PRINT statement
placed within the loop where the computer
is performing its lengthy task. An
example is as follows:

00010 REM GAME ANALYSIS LOOP
00200 FOR N=A TO B

00800 PRINT "*";

00900 NEXT N

01000 END

Details, of course, depend on the game
but the concept is simple and effective.

One of my favorite "heartbeats" is what
I call the "spinner". It makes use of
the H19 or H89 graphics to create a
single-character display which appears
to spin on the screen. The advantage
is that the "spinner" requires only one
character location on the screen and
therefore, by using direct cursor
addressing, can be placed anywhere without
interfering with the rest of the game
display.

The "spinner" is best implemented via
a subroutine, which is called from a GOSUB
placed in the program loop. It may, in
fact, be desirable to place several
GOSUB's throughout the loop to give the
"spinner" the proper rotational speed.
Again, this depends on the particular
application. An example of the
implementation of the "spinner" follows,
Type it into your system and run it,
This routine places the "spinner" near
the lower right corner of the screen.

00010 DIM S$(3)
00020 S$ (0) ="a" : 88 (lj =ny“

20

00030 S$(2)=",":85(3)="x"
00040 ES$=CHRS (27) :F$S=ES$+"F":G$=ES$+"G"
00050 PRINT E$;"E"

60200 REM GAME PROCESSING LOOP
00210 C=0 00220 FOR N=1 TO 20

00400 FOR K=1 TO 15:REM DUMMY TASK
00410 NEXT K
00420 GOSUB 1000

00500 FOR K=1 TO 15:REM DUMMY TASK
00510 NEXT K
00520 GOSUB 1000

00600 FOR K=1 TO 15:REM DUMMY TASK
00610 NEXT K
00620 GOSUB 1000

00700 NEXT N
00710 PRINT E$;"¥Yé6h "

00900 END

01000 REM SPINNER ROUTINE

01010 PRINT ES$;"j";ES$;"x5";FS$;E$;"¥Y6h";
01020 PRINT S$(C)

01030 PRINT G$;ES$;"k";ES$;"y5";

01040 C=C+1:1IF C=4 THEN C=0

01050 RETURN

4. DO INPUT PRE-PROCESSING

This simply means that the game program
should be written to prevent problems
caused by input errors by the player.
The program should process each input
command, move, etc., to determine if it
is as expected. If there is an error,
simply loop back and request a repeat
of the input, rather than allow the
program to abort or get into trouble
trying to work with incorrect information.

For example, if the program expects a
numerical value and the player erroneously
enters an alphabetical character, this
should be detected. The same holds true
for the reverse situation. To illustrate,
study the following examples...

This input expects a positive integer
number and will reject anything else,
with a repeat request for input:

00100 S=9:LINE INPUT "RANGE 2" ;AS$
@011@8 GOSUB 5@@:IF S=1 GOTO 109
g#1280 REM CODE TO PROCESS VALUE (A$)
001308 A=VAL(AS)

0@5080 REM NUMERIC INPUT PRE-PROCESSOR
§0510 L=LEN(AS$)

#8520 FOR N=1 TO L

@@530 K=ASC(MIDS (AS,N,1))

SREMark « Issue 15 « 1981

00540 IF K<48 OR K>57 THEN S5=1:GOTO 568
B0550 NEXT N
#0560 RETURN

This input expects an alphabetic command
word and will reject anything else, with
a repeat request for input:

90108 S=@:LINE INPUT "COMMAND 2" ;A$
g@110 GOSUB 5@9@:1F S=1 GOTO 100
#9126 REM CODE TO PROCESS COMMAND (AS$)

§P500 REM ALPHA INPUT PRE-PROCESSOR
BB518 L=LEN(AS)

#@520 FOR N=1 TO L

90530 K=ASC(MIDS(AS$,N,1))

PP549 IF K<65 OR K>122 THEN S=1:GOTO 570
gP550 IF K>9@ AND K<97 THEN S=1:GOTO 574
0@560 NEXT N

08578 RETURN

Several things should be noted about the
above examples. In both cases input is
done using string variables. This is
always safer in that the code will accept
any of the keyboard characters which might
be entered, correct or otherwise.
Entering an alphabetic character when
the input expects a numeric entry, spells
disaster!

Both examples use subroutines to do input
pre-processing. The same routines are
then available to handle any input
requirement in the game. Variations of
the routines are easily implemented to
handle special case input strings.

In the second example, notice that the
pre-processor will allow both upper and
lower case input. The command word
processor would have to do likewise, but
this is a recommended practice. It is
entirely reasonable to expect a player
to input both upper and lower case

commands. Similarly, it is unreasonable
to prohibit them, from the players point
of view.

5. ECHO ALL INPUT

Program languages such as Microsoft BASIC,
Assembler, etc., permit input entry
without the use of the RETURN key to
terminate the input line. This is often
done when the expected input is a known
number of characters. For such entries
as moves on a Chess Board, Othello Board,
etc., there is no need to require the
player to hit RETURN after each entry.
Such features should be used carefully
or their convenience can become more like
an annoyance.

Provision should always be made to "echo"
the input back to the terminal so the
player can see what has been entered.
In this way, incorrect entries can be
seen and the necessary correction more

SREMark « Issue 15 « 1981

easily understood. Where the program
is written to avoid the need for RETURN
after each entry, the use of input
pre-processing as discussed above, is
especially important since the player
does not generally have the use of the
DELETE key to correct entry errors before
they are "digested" by the program.

In many applications, it is possible to
establish "defaults". This simply means
that unless the player has a specific
input in mind, the program can assume
an input entry which is appropriate at
that instant. To invoke the default,
the player simply types one key, and the
program proceeds according to a built-in
procedure. Two examples follow....

Using Benton Harbor Basic:

go9pP@e@ LINE INPUT "Do you want to move
first? (Y/N) <Y> ";A$

@981@ IF AS="N" OR AS$="n" GOTO 95890

@9¢2¢ AS="Y" @9093¢ REM PLAYER MOVES FIRST

#9500 REM COMPUTER MOVES FIRST

Using Microsoft Basic:

@9080@ PRINT "Do you want to move
first? (Y/N) <¥Y> ";:AS=INPUTS (1)
99419 IF AS="N" OR A$="n" THEN
PRINT A$:GOTO 9500
29020 AS="Y":PRINT AS
#9038 REM PLAYER MOVES FIRST

#9560 REM COMPUTER MOVES FIRST

In the first example, the input must be
terminated by a RETURN. If no character
precedes this, A$ will have a null value.
The program will detect this and assume
the request to be "Y",

The same is true in the second example
except that here the program requires
only one character for input., This
character can be any key, not necessarily
a RETURN. All keys other than "N" and
"n" will be interpreted as "Y".

Note that where the default route is
taken, the variable AS$ is specifically
defined as "Y". This ensures the proper
value for A$ in cases where the variable
is used further in the program. Also,
in the second example, the value is
"echoed" to the terminal, since the
INPUTS$ (1) statement does not do so. The
use of the prompt " (Y/N) <¥>" tells the
player that a Y or N input is expected
and that anything else will be interpreted
as Y.

6. WATCH THOSE SPELLING MISTAKES!

As mere human beings, we all make spelling

21

errors. One reason why text editors are
so popular is the ability to correct these
mistakes easily. Still, it seems that
too many spelling errors get out in public
programs.

"What?", you say, "Spelling errors in
purchased software??!!" Yes indeed!
I have corrected many spelling errors
in programs which I have purchased, HUG
software included. There is really no
excuse for this either. Reasonable care
should be taken to check for such errors,
even to the extent of having someone else
check your work.

There is an expression which goes, "You
only get one chance to make a first
impression." I think that most of us
will agree that first impressions are
the ones which last longest. If we have
produced a game with spelling errors,
the first-time player can readily get
the idea that there are other unforseen
errors in store. This takes the edge
off of the enjoyment of the game for
many . To make matters worse, if the
player is not a programmer, prospects
for going into the code and fixing the
mistake are grim. Take the extra time
to check for spelling mistakes and fix
them before they come back to haunt you,

7. DON'T OVERDO THE WISECRACKS

When heard the first time, a good joke
is worthy of a good laugh. But when
repeated over and over, the humor soon
wears thin, often tec the point of
aggravation. Many games attempt to
display a certain artificial intelligence
from the computer by generating output
statements simulating conversation with
the player. Frequently, these statements
take on a sarcastic tone in an attempt
at teasing the player for a poor move,
input error, etc.

An example seen frequently is, "You can't
move there, you Dummy!", or something
similar. When placed in the program so
that they appear frequently, such
statements lose their humor quickly and
become a drag to the player. Such
statements are best placed where they
appear relatively infrequently during
the game.

It is certainly appropriate for the
program to produce "fireworks" on the
screen when the computer wins, and to
bow out gracefully with moderate
grumblings on the screen when the human
wins, I find this amusing and since it
only happens once per game, it is not
likely to get tiring.

By all means, avoid the use of scatology

(Yes, I have seen it!) or ethnic terms
in these comments. There are plenty of

22

opportunities to be humorous without
risking insult to the player.

8. WHEN THE GAME ENDS, "CLEAN UP"

Although I have listed this last, I find
this to be one of my biggest gripes with
games I have purchased. Often, the game
will use such features as graphics,
reverse video, the 25th line on my H89
terminal, etc. When ending such a game,
I find I am left with a terminal that
has these options set and I must generate
the escape codes to restore things back
to normal.

It is so simple for the program to
"clean-up" this mess that I can't
understand why it isn't done more often.
For example, look at the following code:

09000 E$=CHRS (27) :G$=E$+"G" :L$=E$+"y1"
09010 CS$S=ES$+"y5":V$=ES+"q"

09020 PRINT GS$;LS$;CS;Vs

09030 END

This code exits from graphics, disables
the 25th line, turns on the cursor and
exits reverse video. It might even be
desirable to do a screen erase, depending
on the application. Again, the
non-programmer is at your mercy here.
Try to end your game by returning the
terminal to its normal status.

CONCLUSION

1 am sure that those of you who enjoy
writing computer games, as well as playing
them, will have other ideas about what
makes a successful game. What I have
discussed here is not really crucial to
the success of a game; that is a subject
which goes far deeper than we have room
for here. But, these suggestions will
go a long way toward putting on that final
polish to make a good first impression
on the player, and to help maintain a
long enjoyable life for the program.

I have modified almost every game program
I have ever purchased, to implement the
above ideas. They have proven their worth
in actual use. Moreover, many of these
principles are appropriate for programs
other than games. Take a professional
approach to your programming. You will
enjoy it more and learn it better.

EOF

HUG BUG....Digital Research's
documentation manual indicates that the
PRN: function of PIP is the same as LST:
with TAB expansion and paging. However,
PRN: is more similiar to the LPT:
function. Using PRN: as LST: can cause
your computer to "lock".

SeREMark « Issue 15 « 1981

Sorting and Merging Sequential File Data

(WHEN TO SORT AND WHEN TO MERGE)
(HOW TO KEEP LARGE FILES
SORTED WITH A MINIMUM OF MEMORY)

William N. Campbell, M.D.
855 Smithbridge Road
Glen Mills, PA 19342

ABSTRACT:

A short discussion of fundamentals of
sorting and merging is presented. The
programs referred to are MBASIC programs.

Definitions:

SORT - to put in order, alphabetize, etc.
MERGE- to combine one sorted list with
another sorted list to produce a third
list which is sorted and contains all
the items in the first 2 lists.

I have previously listed 2 short MBASIC
programs, one for using the Shell-Metzner
sort, and one for merging. These are
program 4 and program 17 in my "random
file" article in REM issue 10. Both are
for use on sequential files, such as a
mailing list or an inventory list. At
the time I wrote the merge program I wrote
it as an intellectual exercise and until
quite recently really did not know when,
if ever, I would ever use it. One of
the business lists I maintain is a
sequential data list with patient's last
name at the beginning of each record.
Each record consists of numerous data
fields separated from each other by a
delimiter (I used "\" as the delimiter),
and each record is separated from the
next record by a "return" (new line
character to HDOS). I started this file
with 20 records. Since I desired to keep
the records in ascending alphabetical
order by last name, I simply created (and
then appended to) the file using programs
similar to other programs listed in the
above article in REM issue 10. However,
since I knew that this list would grow
and grow (probably to about 5000 records
before the list is completed over the
next year), I sorted (alphabetized) the
list using HUG's SORTER.ABS program, since
I wished to utilize all available memory
(the MBASIC interpreter takes up a LOT
of memory and Bill Moss's SORTER program
is very small, is in machine language,
and uses the Shell Metzner algorithm which
provides for an extremely fast sort --
for example, it will sort 500 records,
each B0 characters long, in about 7
seconds!)

Each time 10 or so records were appended
to the bottom of the list, I simply sorted
the entire list (remember that this is
a VERY fast SORT). This continued UNTIL

SREMark » Issue 15 + 1981

I ran out of memory for the sort! At
this time there were only about 300
records in the list BUT each of these
records were about 128 characters long.

WHAT TO DO?

My first thought was to do what I had
done with another business list, this
one about 1000 records long, with each
record averaging about 75 characters.
Again, the first field was last name
followed by first name. Experimentation
with this list had shown that SORTER could
sort about 500 of these records without
running out of memory. So, I had written
a simple MBASIC program which simply line
inputted, line by line, from the list
to be sorted, then outputted to 2
temporary files. One file (A) received
all the records whose first character
(the last name was the first field in
all these records) was less than "M",
and the other file (B) got the remaining
records. Then, I went to the monitor
(> and ran SORTER on file A, then on
file B, then simply concatenated the 2
files using PIP., The MBASIC line which
output to temporary file A or temporary
file B was:

200 IF LEFTS (X$,1) <"M" THEN PRINT #2,XSe@
ELSE PRINT #3,X$

I was about ready to implement this
procedure with my present file which ran
out of memory, when it occurred to me
that sooner or later I would need 3
temporary files, then more, and more,
etc., all to be concatenated after
individual sorting, as my list grew larger
and larger, At this point a "light
flashed and a bell rang"! Since my
original list was always sorted, and since
I was only adding 10 or 20 records at

a time, why not just sort the records
to be added, then merge the 2 sorted
lists? WHY NOT INDEED?

This, of course, proved to be the solution
I needed. It turns out that this
procedure is much faster than sorting
a large list of records that is already
in order (already sorted) with just a
few unsorted records appended to the
bottom of the list!

(vectored to page 25)

23

Tiny BASIC Tricks

Because of the effort to get REMark back on schedule, I did not have time to write
a Tiny BASIC Tricks column in the last issue, and have not had much time for it
this time. So for this column I will present for your enjoyment a Tic-Tac-Toe game
for ET3400 BASIC. This game was sent to us by George I. Brown, 2428 Eck Dr.,
Raleigh, NC 27604.

10 REM TIC-TAC-TOE PROGRAM BY GEORGE BROWN. 8/u0

20 PR"THIS IS A TAC-TAC-TOE PROGRAM. THE COMPUTER WILL PRINT"

30 PR"A TIC-TAC-TOE DIAGRAM WITH ALL ITS POSITIONS NUMBERED FROM"
40 PR"1 THROUGH 9. IT WILL THEN PRINT ITS FIRST MOVE USING X. ON"
50 PR"THE LINE BELOW, IT WILL PRINT 0=? AND WAIT FOR YOUR MOVE."

60 PR"AFTER YOU DECIDE YOUR MOVE, YOU TYPE ITS NUMBER AND THEN"

70 PR"PRESS THE RETURN KEY. THE COMPUTER WILL RESPOND BY PRINTING"
80 PR"ITS NEXT MOVE. THIS PROCEDURE WILL CONTINUE UNTIL THERE IS"
90 PR"A WINNER OR A DRAW. OK, LET'S START."

100 PR" I 2

110-PR" 1 I 2. T 3% 600 PR"X=2"

120 PR" I 2 610 GOSUB 1420

130 PR"===== e i " 620 IF 0=8 GOTO 650
140 PR" I " 630 LET X=8

150 PR 4 I 5 I 6" 640 GOTO 1360

160 PR" I il 650 PR"X=4"

LE70 PR%Y=mmme L i e " 660 GOSUB 1420

180 PR" I I 670 IF 0=6 GOTO 700
190 PR" 7 I 8 I 9" 680 LET X=6

200 PR" I 1" 690 GOTO 1360

210 PR 700 LET X=7

220 PR"X=5" 710 GOTO 1450

230 GOSUB 1420 720 PR"X=3"

240 IF O=1 GOTO 310 730 GOSUB 1420

250 IF 0=2 GOTO 450 740 IF 0=7 GOTO 770
260 IF 0=3 GOTO 550 750 LET X=7

270 IF 0=4 GOTO 720 760 GOTO 1360

280 IF 0=7 GOTO 920 770 PR "X=1"

290 IF O=8 GOTO 1090 780 GOSUB 1420

300 IF 0=9 GOTO 1190 790 IF O0=2 THEN LET X=9
310 PR"X=3" 800 IF O0=9 THEN LET X=2
320 GOSUB 1420 810 GOTO 1360

330 IF 0=7 GOTO 360 820 PR"X=1"

340 LET X=7 830 GOSUB 1420

350 GOTO 1360 840 IF 0=9 GOTO 870
360 PR"X=4" 850 LET X=9

370 GOSUB 1420 860 GOTO 1360

380 IF O=6 GOTO 410 870 PR"X=3"

390 LET X=6 880 GOSUB 1420

400 GOTO 1360 890 IF O=2 THEN LET X=7
410 PR"X=8" 900 IF 0=7 THEN LET X=2
420 GOSUB 1420 910 GOTO 1360

430 IF O0=2 THEN LET X=9 920 PR"X=1"

440 GOTO 1450 930 GOSUB 1420

450 PR "X=7" 940 IF 0=5 GOTO 970
460 GOSUB 1420 950 LET X=9

470 IF 0=3 GOTO 500 960 GOTO 1360

480 LET X=3 970 PR"X=8"

490 GOSUB 1420 980 GOSUB 1420

500 PR"X=1" 990 IF 0=2 GOTO 1020
510 GOSUB 1420 1000 LET X=2

520 IF O0=4 THEN LET X=9 1010 GOTO 1360

530 IF 0=9 THEN LET X=4 1020 PR"X=4"

540 GOTO 1360 1030 GOSUB 1420

550 PR"X=9" 1040 IF O=6 GOTO 1070
560 GOSUB 1420 1050 LET X=6

570 IF 0O=1 GOTO 600 1060 GOTO 1360

580 LET X=1 1070 LET X=3

590 GOTO 1360 1080 GOTO 1450

24 SREMark « Issue 15 « 1981

:RUN

THIS IS A TAC-TAC-TOE PROGRAM.

THE COMPUTER WILL PRINT

A TIC-TAC-TOE DIAGRAM WITH ALL ITS POSITIONS NUMBERED FROM
ROUGH 9. IT WILL THEN PRINT ITS FIRST MOVE USING X. ON

1 TH
THE

AFTER YOU DECIDE YOUR MOVE,
PRESS THE RETURN KEY,

LINE BELOW,

AND THE COMPUTER WINS!
E 1 TO CONTINUE OR 0 TO STOP.
N PRESS THE RETURN KEY.

AND THE GAME IS A DRAW.
E 1 TO CONTINUE OR 0 TO STOP.
N PRESS THE RETURN KEY.

ITS NEXT MOVE.
A WINNER OR A DRAW.
I I
lL I 2 I 3
I I
_____ § (T R ———
I I
4 I 5 I 6
I I
_____ I-----I-----
I I
7 I 8 I 9
I I
X=5
0=? 1
X=3
0=2 7
X=4
0=2 2
X=6
TYP
THE
2 L
X=5
0=7? 3
X=9
0=2 1
X=2
0=? 8
X=4
0=? 6
X=7
TYP
THE
20

Continuation of Listing

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300

PR "X=7"
GOSUB 1420
IF 0=3 GOTO
LET X=3
GOTO 1360
PR"X=1"
GOSUB 1420
IF O=4 THEN
IF O=9 THEN
GOTO 1360
PR"X=7"
GOSUB 1420
IF 0=3 GOTO
LET X=3
GOTO 1360
PR"X=6"
GOSUB 1420
IF 0=4 GOTO
LET X=4
GOTO 1360
PR"X=2"
GOSUB 1420

Y REMark « Issue 15 « 1981

1140

LET X=9

LET X=4

1240

1290

IT WILL PRINT 0=? AND WAIT FOR YOUR MOVE.
YOU TYPE ITS NUMBER AND THEN

THE COMPUTER WILL RESPOND BY PRINTING
THIS PROCEDURE WILL CONTINUE UNTIL THERE IS
OK, LET'S START.

1310 IF O=8 GOTO 1340

1320 LET X=8

1330 GOTO 1360

1340 LET X=1

1350 GOTO 1450

1360 PR"X=";X;" AND THE COMPUTER WINS!"
1370 PR"TYPE 1 TO CONTINUE OR 0 TO STOP."
1380 PR"THEN PRESS THE RETURN KEY."

1390 INPUT A

1400 IF A=0 THEN END

1410 GOTO 210

1420 PR"O=";

1430 INPUT O

1440 RETURN

1450 PR"X=";X;" AND THE GAME IS A DRAW."
1460 GOTO 1370

EOF

(vectored from page 23)

Since I always need "hard copy" of any
new file just after sorting the "records
to be appended", it was simple enough
to add to the merge program (program 17)
so that everytime we "PRINT #3," we also
"PRINT #4," (a 4th file was opened with
output to "LP:" - hence, "PRINT #4," -
remember to tell MBASIC you will need
4 files when you load MBASIC as your
manual instructs). This moﬁification
of the merge program provided me with
"hard copy" of the new list, at the SAME
time the new merged list was being created
and output to disk (PRINT #3,).

WORKS GREAT and I only wish I had thought
of this procedure before,

So, carrying the above a step further,
it became obvious that you could create
enormous lists (up to your disks'
capacities) with very little memory
overhead, and you could do everything
in MBASIC. You simply could create the
original list with only 10 to 20 records,
and sort it. Then, instead of appending
to the list and sorting the whole thing,
you would create a temporary file of the
NEW unsorted records, sort them and then
merge them with the original previously
sorted list, etc., etc..

The concept is so simple and logical,
but SORTER.ABS is SO fast that the obvious
(merging) had become "unobvious" to me!

EOF

25

BUGGIN’

MAN'S BEST FRIEND (BASICally)
Dear HUG,

I seem to have a minor problem that you
might be able to shed some light on.
It all started ten months ago when I got
my H-88 computer. Since that time my
wife complains that I'm REPEATedly LOCKed
in my workshop with my new found friend.
She also complains that all I ever do
is eat, sleep, and talk computer. IF
this is true THEN I could END up in the
doghouse. I am hoping a word of
encouragement from you to my wife might
RESTORE her feelings for me and my toy
and convince her that I don't always have
my mind PROGRAMmed for that computer.

I don't know how I accomplished it, but,
I was able to convince her to get me a
DISK drive for Christmas so I could make
my unit into an H-89. This was an
OUTstanding addition, and gave me a whole
new toy to play with. Since that time
I have spent every minute I could get
away with CHAINed to the chair in front
of it. When I RETURN HOME from work I
PEEK around the corner to make sure the
coast is CLEAR, and then RUN to my
workshop to ESCAPE from the pressures
of work. When my wife POKEs her head
into my room, she always has some
derogatory REMark to make in an attempt
to SHIFT my attention away from my H-89.
Now I'm SCRATCHing my head wondering if
I should RESET my way of thinking in order
to SAVE our marriage. She has threatened
to BUILD a barrier in front of my new
companion or REPLACE it with an old BOOT.
I feel it is time to take drastic STEPs
and LET her have her way. She has LISTed
her grievances and I'll attempt to CLEAR
up as many as possible by FREEing some
of my time to be with her. A couple of
minutes set aside for her should be
sufficient (I hope).

26

Possibly all is not lost, because I caught
her ENTERing the workshop to play
"Adventure"., She had CLOSEd the door

so I wouldn't see, but I stopped to watch
anyway.

So, what I need is a word from the wise
in order to DELETE her way of thinking
so I can RETURN once again to a very
relaxing hobby. I still can't understand

why she insists that all I ever think
about is my computer!

*BYE

SURE?Y

Jim Doherty
18357 Citrus Edge
Azusa, CA 91742

Jim....

It's obvious that you should PUT her in
some "TWISTY LITTLE MAZE" and tell her
you will be back to GET her later!

Uncle HUG

Dear HUG,

I recently modified my H-14 and find the
mod to be such a convenience to me that
I thought I might pass it on to you.

The modification was prompted by a chronic
problem of mine (and I suspect a lot of
other folks), namely, that of sitting
in front of the CRT and wondering why
nothing is happening. To my chagrin,
the problem is usually the result of
having left the H-14's ON LINE switch
in the "out" position; having earlier
set it this way to program the printer.

Quite simply, the modification consists
of installing an SPST, normally closed
push button switch (Radio Shack #275-1548)
in the line from the ON LINE latching
switch to pins 8 and 15 of the input
buffers Ul@9 and Ul1l@ respectively. Thus,
when the new switch is in place, just
leave the ON LINE switch "IN". To use
the FEED FWD or FEED REV, just press your
choice then press (bringing the above
mentioned pins to +5 Volts, enabling the
buffers) and release the mod button.
Once enabled, the FEED buttons will
function until you release them. Likewise
for the FORM FEED (of course the FORM
FEED waits until that switch is
released). The function of the ON LINE
switch remains unaltered. The ON LINE
switch must be "IN" for the new mod button
to function.

(vectored to page 28)

¥REMark « Issue 15 = 1981

Dear HUG,

Occasionally it is necessary to know the
binary equivalent of a decimal number.
However, unless you have a conversion
chart handy, then it can be a tedious
procedure to deduce the proper seguence
of "1s and @s". Since I could not find
such a chart and did not wish to do a
conversion manually on each number that
I desired, I wrote two simple programs
to handle the chore for me.

The larger of the two listings runs the
slowest. About six times slower
actually. The main reason being the use
of the FOR/NEXT loops. Also, it uses
exponential notation as a part of the
algorithm.

The shorter program uses a division
routine on each number and determines
the correct bit sequence depending on
the remainder after dividing by two.
The end result is shuffled around in
string format before the final conversion
is printed.

Both programs , of course, give the same
results, one simply runs faster than the
other. Both are written to output to
a printer so that a listing can be
generated for future reference. The
largest number that will be converted
is 255 (decimal).

Ray Massa
125 Aspen
Birmingham, MI 48@@9

1@ REM DECIMAL TO BINARY CONVERSION

20 REM Written by Ray Massa
30 OPEN"O",#1,"LP:"

4¢ PRINT#1,"128 ";"64 ";"32 ";"16 ";"B ;"4 e e
5@ PRINT#1 i M === s===s=sz==sm=======s==z===cc=="
68 FOR M=@ TO 255

78 Z=M

8@ FOR X=8 TO @ STEP -1

9¢ IF 2AX<=Z THEN 1290

140 NEXT

110 REM

120 IF X=0 THEN A=1

13@ IF X=1 THEN B=1:2=Z-2:GOTO &@

14¢ IF X=2 THEN C=1:2=Z-4:GOTO 8@

150 IF X=3 THEN D=1:2=Z-8:GOTO 8@

16@ IF X=4 THEN E=1:2=Z-16:GOTO 8@

178 IF X=5 THEN F=1:Z=Z-32:GOTO 8@

18 IF X=6 THEN G=1:2Z=2-64:GOTO 84

190 IF X=7 THEN H=1:Z=Z-128:GOTO 8¢

200 REM

21@ PRINT#1,

220 PRINT#1,H;G;F;E;D;C;B;A;" **kkx 1N.M
230 A=0:B=0:C=0:D=0:E=0:F=0:G=0:H=0:

240 NEXT M

250 CLOSE#1

26@ END

1¢ REM DECIMAL TO BINARY CONVERSION

20 REM Written by Ray Massa
380 OPEN "O",#1,"LP:"

4@ FOR M=@ TO 255

50 Z=M

55 IF Z=f THEN BIS$="0@008@00"
6@ T=Z/2

7@ IF T<1 THEN 118

8@ IF T=INT(T) THEN BINARYS$="p"+BIS ELSE BI$="1"+BIS

90 Z=INT(T)
10¢ GOTO 60

11¢ BIS="0Q00AABEL"+BIS

12¢ BIS=RIGHTS (BIS,8)

130 PRINT#1,BIS;" ***x .M
14¢ BIS=""

150 NEXT M

168 CLOSE#1

178 PRINT:PRINT

18¢ END

$REMark « Issue 15 » 1981

27

(vectored from page 26)

There is room for the new switch
immediately above the ON LINE latching
switch and in the same horizontal plane
as the POWER and HIGH TEMP LEDs. The
switch is interposed into the red lead
of the eight lead ribbon under the
insulating shield.

Sincerely,

William R. Rousseau, M.D.
1388 Highland Ave.
Salem, OH 4446¢

Editor's Note: If you perform
modifications to your Heath equipment,
these modifications should be removed
if your unit requires service by the
factory or Heath centers. The technicians
working on your product will have no way
of knowing what the results hardware
changes will cause. And, in many cases,
they are unfamiliar with the specifics
of the modification and what it is
installed for! {They really appreciate
your co-operation in this regard.)

Dear HUG,

The back cover of REMark Issue 12, Nov.
198¢f, contains a Sunrise - Sunset
program. Lines 5@ and 50 are listed as:

@e@5¢ Ll=(L1-INT(L1))/6@+L1
@OR6A L2=(L2-INT(L2))/66+L2

But they should read:

@@@#5@8 L1=(L1-INT(L1))/@.6+INT(L1)
@@P6@ L2=(L2-INT(L2))/@.6+INT(L2)

These changes will correctly convert
degrees and minutes to decimal degrees.

The answer for MONTH 3, DAY 1A, LATITUDE
37.57 and LONGITUDE 91.46 will then be:

SUNRISE CMT 12 hours 21 minutes

SUNSET GMT 24 hours 1@ minutes

GIVING 11 hours and 48 minutes of
daylight.

Sincerely,

M.G. Keeney

MICHIGAN STATE UNIVERSITY
Computer Science Department
Computer Center

East Lansing, MI 48824

28

Non-Heath Products

Henry Fale, of PORTZABEE COMPUTER
SERVICES, publishes a monthly newsletter
known as H8SCOOP. Henry's HB8SCOOP is
very current on Heath Equipment and
associated gear that, for the most part,
is fully compatible with your Heath
computer. If you would like more details
on subscription rates for H8SCOOP, Henry
can be contacted at PORTZABEE COMPUTER
SERVICES; 2981 S. 7th St.; Sheboygan,
Wisconsin 53@81.

Minit-Forms Paperware

VIDEO LAYOUT SHEET-used to layout graphics
on the H19, H89, H88, Z19 & Z89 terminals
and computers.

Size 11" x 14-1/4". Model § MF-001
GENERAL PURPOSE PROGRAMMING SHEETS-used
for BASIC and assembly language
programming, back sides carries info on
the Heath and Zenith terminal escape
sequences plus area for user defined
variables.

Size 8-1/2" x 11". Model § MF-902.
FLOWCHARTING WORKSHEET-this sheet carries
a 5 X 9 array of programming positions.
Each position has 5 general programming
symbols plus connecting lines both on
center and between each position, both
vertical and horizontal allow for easy
flowcharting without the use of templates.
Size 11" x 14-1/4". Model § MF-003.

Two NEW forms now available are a PRINTER
LAYOUT SHEET-132 columns wide by 68 lines
high (MF-06@864) and a OVERLAY made of
plastic for use in plotting your forms
for printing (MF-0065). A grease pencil
can be used on the new OVERLAY.

All forms are printed in fade-out blue
on #6@ white offset stock, all are padded
in 50's with a 60 point chipboard backing
and standard three hole drilled for ring
binders.

The forms are currently offered at $2.50
per pad, (overlay MF-@@85 $2.50 each when
ordered with other forms else $4.6# each)
mix or match, with minimum of 5 pads,
which includes shipping (within the
continental U.S.).

Order from: Minit-Man Printing
211 E. Allegan Street
Otsego, MI 49078
Phone orders accepted: 616-694-9141
VISA, MC accepted.

Minit-Forms are also available from most
Heathkit Electronic Centers.

JeREMark « Issue 15 « 1981

HUGBB Via MicroNET

PART I: MicroNET for Beginners

1) What is MicroNET?

MicroNET is a computer service provided
by the Personal Computing Division of
CompuServe Incorporated in Columbus,
Ohio. By connecting your personal
computer or terminal to the MicroNET
system you are able to "talk" to a large
computer. This service opens up some
"neat" features not available from a
small, single computer.

The MicroNET (MNET) system allows you
to write and edit programs and data files
and store them on the system. You are
able to run your own programs and able
to access data files and programs in the
MNET library. Another feature is the
ability to communicate with other users
or the MicroNET staff. (For more detail
on the options and features of the
MicroNET system see the MicroNET User's
Guide.)

2) Who can use MicroNET?

Valid MicroNET members have been issued
a MicroNET number called a "User ID;"
which enables them to access the system.
This ID number allows the member to "log
on" and "log off" the MNET system at
“legal™ hours determined by a priority
level from their User ID.

3) How do I become a member of the
MicroNET system?

If you are interested in becoming a member
of the MicroNET computer system, you will
need to fill out a "Information Service
Request and Agreement" and mail to
CompuServe. These forms are available
at most HEATH stores, here at Heath Users'
Group or write to:

Information Service Division
CompuServe Incorporated

5000 Arlington Centre Blwvd.
Columbus, Ohio 43228

The cost to become a member is $9.00.
The charge to operate on the MNET system
is approximately $5.88 an hour. (This
charge will vary because some of the
features have no charge to the member.)

$REMark = Issue 15 » 1981

Do NOT send any money wWwith your
"application" as MNET will bill you direct
or bill you by credit card which you will
provide on this form. In return you will
receive a valid User ID and MicroNET User
Guide which will enable you to access
the MicroNET system.

4) If I become a member what do I need
to get on or "talk" to MicroNET?

Your computer will "talk"™ to the MNET
system by telephone . . . so be sure your
computer is set up close to a standard
telephone receiver. You will need a
MODEM, which is the "interface" between
your computer and MNET. The modem is
simply the "holder"™ of the telephone
receiver which controls the receiving
and sending of messages. (See your
computers owners manual for instructions
on where and how to connect the modem
to your computer.)

At this point the hardware interface is
complete. . . now it would be nice to
have a software interface that would allow
us to receive and send complete files
from our computer and in particular from
our disk storage.

There are software interfaces on the
market, HUG has the MODEM COMMUNICATIONS
SYSTEM (MCS) while Softstuff (tm) has
the COMPUTERIZED PHONE SYSTEM (CPS).
I currently use CPS to do the monitoring
so any mention of software interfacing
from this point on will pertain to CPS.
(In future issues I will explain MCS if
I feel there is a need . . . both modem
systems are similiar in their functions
and have fairly accurate documentation.)

Now you are ready to "talk" to the MNET
system. . . except for a telephone number
in your area, which MicroNET provides
or call 1-8¢@-848-89940.

5) What is the HUG Bulletin Board?

The HUG Bulletin Board (HUGBB) is a
service of Heath Users' Group for the
members of HUG who are also members of
the MNET system. The HUGBB has its own
"operating system" for receiving and
sending messages between HUG members.

29

This allows HUG members to "meet" with
fellow HUGGIES in conversation that is
centered around our general interests.

The members of the HUGBB are able to
access the HUGBB Data Base. This file
explains the programs (games or utilities)
that are available from our DIRectory.
Any new information or frequently ask
questions will be posted on the Data
Base. These are the general uses of the
HUGBB.

6) What does the HUG Bulletin Board have
to do with MicroNET?

The HUGBB is only a very small part of
the MicroNET system and to the HUGBB
member a very important part. However,
we must remember that MicroNET is MicroNET
and HUG is not able to advise or support
the MNET system.

The HUGBB requires the facilities of MNET
to function and for that we are grateful
(no comment "blown" users). We have to
use their COPY and transfer functions
to exist as a service to our members.

7) What is "TYMNET"
relate to MicroNET?
TYMNET is a telephone service to more
populated areas that MicroNET users may
use so as to call MNET on a local number
saving on long distance charges. There
is an addition fee on your MNET account
of $2.00 per hour for the use of TYMNET.
(MicroNET also has a list of these phone
numbers.)

and how does it

At this point you should have a basic
picture as to what MicroNET and the HUG
Bulletin Board are and what they are
intented to do. Now for those of you
who have a computer or terminal, a modem,
a valid User ID, and a standard telephone
receiver you are now ready to access MNET
and the HUGBB.

PART II: TALKING TO MNET AND HUGBB
Before you can actually access the
MicroNET system you must set your modem
to properly receive the "signal" from
MNET. The modem must be set to "full
duplex" and "originate mode". (See the
modem instructions to set same.)

You should now be ready to access the
MNET system . . .so

a) Dial the MicroNET (or TYMNET)
telephone number in your area. (We will
assume for our purposes that you are
calling a TYMNET phone number.)

b) When you hear a continuous, high-
pitched tone, properly position the
telephone handset into the acoustic
coupler on the modem. (If you do not
hear the high-pitched tone, redial until

30

you do.)

At this time the software interface (CPS)
and TYMNET take command. It will ask
you to identify your terminal . . enter
"A" and no carriage return. You will
then be asked to LOGIN so . . type "CPS"
and a carriage return, then it will ask
for a password enter "WELCOME",

You are now at the point of actually
logging on MNET. The system will pause
slightly after entering the password
"WELCOME" after which a " C" will be
displayed on the screen and then you will
be asked to enter your User ID and then
your Password. At this time the system
will identify itself and then display
the MNET prompt which is "OK". You are
now on MicroNET and if you prefer you
may proceed to "play"™ with the MNET.

To get on the HUGBB from the MicroNET
prompt, enter "IRUN HUG[788P0,21] and
then you will enter the HUG Bulletin
Board. Now refer to REMark issue §13
on page 19 for a sample session on the
HUGBB.

Even though you are running on the HUGBB,
you are not a member of the HUGBB and
you therefore are not able to access the
<X>Data Base or the <V>Int Log. To be
added to the HUGBB, <L>eave a message
to "SYSOP" asking to be added . . .
include your HUG membership number so
as we can verify your status. Then the
next time maintenance is done you will
be recognized by the HUGBB system and
be able to access the areas for HUG
members only.

When you have concluded your monitoring
of MNET and the HUGBB be sure you
<T>erminate from the HUGBB and then enter
"BYE" at the MNET prompt when you are
ready to get off the system. CPS also
has a logoff procedure which is
accomplished by pressing the white (or
gray) key at the top of your keyboard.

We have taken you from an introduction
of the MicroNET system through to the
HUG Bulletin Board in this little
article. 1If you have problems "getting
on" the HUGBB, try following through the
procedure again. If you still have
problems give me a call and I will try
to see what is the problem. Once you
are on the HUGBB and you have questions
about it, first "play" with it for a while
and I am sure you will find the answer
yourself (the bulletin board is not too
difficult to follow through).

This article should give you a fairly
good idea what MicroNET, TYMNET, and the
HUGBB are and how you can use them as
a member of the Heath Users' Group.

JREMark » Issue 15 « 1981

PART III: NOTE to all HUGBB Users

The HUGBB is definitely having some
problems . . . The HUG Bulletin Board
may be changing within the near future
possibly even by the time of the release
of this issue of REMark. We are hoping
for an easy transistion period so as not
to cause any "discomforts"™ to you as the
user. The change-over is to be fairly
simple with the user not being too aware

NEW CLUB FORMING

Kenny Adcock is forming a new Users' Group
in Riverside California. Anyone
interested can reach Kenny by writing
him at 5785 Via Sotelo; Riverside,
California 92506 or calling (714)-683-1143
(leave message).

of the change . . . However, many of the
functions may require some experimentation

on your part as the user. OVER THE BIG WATERS....

SYSOP <TLJ>

FHUG (the Frankfurt Heath Users' Group)
of Frankfurt, Germany has been formed.
Anyone interested in becoming a member
is requested to contact Carl Lovett by
writing American Consulate General FRDCO;
APO New York, New York @9757; or calling
566187.

Local HUG News

The Pacific Northwest Heath Users' Group
(PNHUG) has published their first
newsletter. They hope to provide their
newsletter from four to six times a year
depending on the information provided
by their membership. The first attempt
looks good. The newsletter indicated
alternate meeting locations with odd
months scheduled for the Southcenter Heath
Electronics Center and even months
scheduled for the Seattle Heath
Electronics Center. These HEC stores
can be contacted for further information.

HEC STARTING NEW GROUP

The Heath Electronics Center located at
5285 Roswell Road in Atlanta, Georgia
30342 is starting to form a local group
to support Heath systems in their area.
Interested individuals or groups may
contact the center for additional
information. Their phone number is
(404)-252-4341,

Changing your address? Be sure and let us know since the software catalog and
REMark are mailed bulk rate and it is not forwarded or returned.

HUG MEMBERSHIP RENEWAL FORM

REMEMBER — ENCLOSE CHECK OR MONEY ORDER
When was the last time you renewed?
CHECK THE APPROPRIATE BOX AND RETURN TO HUG

Check your ID card for your expiration date.
NEW MEMBERSHIP

IS THE INFORMATION ON THE REVERSE SIDE CORRECT? FEE IS:
IF NOT FILL IN BELOW.
RENEWAL RATES
Name _ US DOMESTIC $15] $18]
CANADA $17 [] US FUNDS $20]
Address INTERNAT'L* $22 [US FUNDS $28 [
City-State * Membership in England, France, Germany, Belgium,
Holland, Sweden and Switzerland is aquired through the
Zip local distributor at the prevailing rate.

%REMark « Issue 15 « 1981 31

Making Waves

G Posters in Tiny BASIC

Dress up your computer room or the kids
room with these fine color posters
developed for HUG by Ray Massa. Each
poster measures a large 24 inches by 18
inches and is protected by an individual
mailing tube to prevent damage while in
transit to your selected walll

This TINY BASIC program is used to
demonstrate the geometric mathmatics
required to construct a parabola (lines
19 to 98) followed by a reverse
computation (lines 1A@ to 280) to form
a continuous sine-wave pattern on your

] WER is the first poster and was terminal. (Anyboby for Football??!!!)

featured as the front cover for Issue
#11 of REMark. The HUG part number for

this item is 885-17. 18 LET A=-5

=A*
H89 ROCK was also shown as the rear cover 53 Eg$ g=g 3
on Issue #11 of REMark and is available 40 IF B=C THEN PRINT "#*"
as your second choice by ordering HUG 50 IF B>C THEN PRINT " "
part number 885-18. 680 LET C=C+1 !
H8 COLOR GRAPHICS is featured as the third gg EETC;;;&;OTO 18
poster you can choose from. This 98 IF A<>6 GOTO 20
fantastic piece of art was chosen as the 100 LET W=-5§
front cover for Issue #12 of REMark. 110 LET X=W*W
This particular poster is available as 1280 LET Y=58-X
HUG part number 885-19. 130 LET Z=0

= " "
Each of the above posters may be ordered igg ﬂ ¥>§ g:g: gg§:$ i.*..,
directly from the Heath Users' Group or 160 LET Z=Z+1 !
you may purchase them from your local 170 IF ¥>=7 ~~7T .49
Heath Electronics Center. If your local 180 LET W-w+l
store is out, ask them to order for you. 199 IF W<>6 GOTO 11@
These posters are available for only $2.95 200 GOTO 10
each,

*

BULK RATE
U.S. Postage
amm Heath A
USGFS Heath Users’ Group

Group
Hilltop Road
St. Joseph Ml 49085

POSTMASTER: If undeliverable,
please do not return.

885-2015

	REMark_issue15_1981_Page_01
	REMark_issue15_1981_Page_02
	REMark_issue15_1981_Page_03
	REMark_issue15_1981_Page_04
	REMark_issue15_1981_Page_05
	REMark_issue15_1981_Page_06
	REMark_issue15_1981_Page_07
	REMark_issue15_1981_Page_08
	REMark_issue15_1981_Page_09
	REMark_issue15_1981_Page_10
	REMark_issue15_1981_Page_11
	REMark_issue15_1981_Page_12
	REMark_issue15_1981_Page_13
	REMark_issue15_1981_Page_14
	REMark_issue15_1981_Page_15
	REMark_issue15_1981_Page_16
	REMark_issue15_1981_Page_17
	REMark_issue15_1981_Page_18
	REMark_issue15_1981_Page_19
	REMark_issue15_1981_Page_20
	REMark_issue15_1981_Page_21
	REMark_issue15_1981_Page_22
	REMark_issue15_1981_Page_23
	REMark_issue15_1981_Page_24
	REMark_issue15_1981_Page_25
	REMark_issue15_1981_Page_26
	REMark_issue15_1981_Page_27
	REMark_issue15_1981_Page_28
	REMark_issue15_1981_Page_29
	REMark_issue15_1981_Page_30
	REMark_issue15_1981_Page_31
	REMark_issue15_1981_Page_32

